
Adaptive Bitrate with User-level QoE Preference for
Video Streaming

Xutong Zuo∗, Jiayu Yang†, Mowei Wang∗, Yong Cui∗‡
∗Tsinghua University, China

†Beijing University of Posts and Telecommunications, China

Abstract—Recent years have witnessed tremendous growth of
video streaming applications. To describe users’ expectations
of videos, QoE was proposed, which is critical for content
providers. Current video delivery systems optimize QoE with
ABR algorithms. However, ABR is usually designed for an
abstract “average user” without considering that QoE varies
with users. In this paper, to investigate the difference in user
preferences, we conduct a user study with 90 subjects and
find that the average user can not represent all users. This
observation inspires us to propose Ruyi, a video streaming system
that incorporates preference awareness into the QoE model
and the ABR algorithm. Ruyi profiles QoE preference of users
and introduces preference-aware weights over different quality
metrics into the QoE model. Based on this QoE model, Ruyi’s
ABR is designed to directly predict the influence on metrics
after taking different actions. With these predicted metrics, Ruyi
chooses the bitrate that maximizes user-specific QoE once the
preference is given. Consequently, Ruyi is scalable to different
user preferences without re-training the learned models for each
user. Simulation results show that Ruyi increases QoE for all
users with up to 65.22% improvement. Testbed experimental
results show that Ruyi has the highest ratings from subjects.

Index Terms—video streaming, bitrate adaptation, quality of
experience, deep learning

I. INTRODUCTION

With the emergence of new applications such as video

conferences and 4K videos, the volume of video streaming

traffic has increased rapidly in recent years [1]. As reported

by Cisco, video traffic could make up as much as 82% Internet

traffic by 2022 [2]. Meanwhile, user demand on video quality

has been on the rise. In order to increase revenue, content

providers make great efforts to meet users’ expectation with

the limited network resources.

Quality of Experience (QoE) is used to describe user

expectations and has been a rapidly evolving research topic in

adaptive video streaming. Aiming to describe users’ percep-

tion, many QoE models are proposed, including learning-based

methods [3], [4] and parametric methods [5], [6]. Learning-

based methods can automatically generate the desired models

while parametric methods are simple in form and do not

require much data. With the QoE model as the optimiza-

tion objective, Adaptive BitRate (ABR) algorithms have been

proposed and make great breakthroughs [5], [7]–[9]. The

effectiveness of ABR algorithms is attributed to the fact that

ABR splits the videos into chunks, encodes chunks into several

‡Yong Cui is the corresponding author.

quality levels and selects the bitrate for each chunk according

to network conditions.

As a simple observation, users have different preferences

towards various QoE metrics. When the bandwidth resources

are limited, the videos will be distorted with different levels of

rebuffering, visual quality and switching, etc. In this condition,

users usually have different tolerances for the above distortion

types. In this paper, we refer to the tradeoff among these
distortion types as user preference. For example, some

users would rather tolerate the rebuffering than watch low

visual quality videos, whereas some users are on the opposite.

However, user preferences have mostly been neglected in

existing QoE models and ABR algorithms, which may hinder

the performances. Specifically, most QoE models assume that

all users have the same preferences. They calculate the Mean

Opinion Score (MOS) and regard it as the score of an “average

user” [3], [4], [10]. Although some works take user preferences

into consideration of video images [11], temporal impair-

ments, like rebuffering, which are key factors in adaptive

video streaming are not included. Besides, traditional ABR

algorithms are also agnostic to user preferences, because they

usually optimize towards a fixed QoE model [5], [7]–[9].

With the simple observation that QoE preferences vary with

users, a natural question arises: how different users’ QoE

preferences are? To answer this question, we first conduct a

user study of 90 subjects in Section II-A, followed by the

key findings (Section II-B). Notably, we find non-negligible

differences among QoE preferences, and thus an average

subject can not represent all users.

Based on the findings in the user study, we argue that

user preferences on QoE should be considered. To achieve

this, ABR should optimize for each user with the preference-

aware QoE model. To achieve this, we propose Ruyi1, a video

streaming system that incorporates user preferences into both

the QoE model and the ABR algorithm.

We first profile the unique user preference of video quality

and try to improve prediction accuracy of QoE model. For

compatibility, Ruyi takes a pragmatic method, which supports

adaptable changes to the existing QoE models. Particularly,

Ruyi is based on the representative additive QoE models which

account for a large proportion of existing QoE models [5], [6],

1Ruyi, which means as you wish in mandarin, is a talisman symbolizing
good fortune.

[8], [10], [12], [13]. It can consist of some meta metrics (e.g.,

VMAF, rebuffering, smoothness) and weights over them [5],

[8], [14]. For Ruyi, we propose preference-aware weights.

To estimate the weights, we collect quality ratings directly

from real users with in-lab rating. The subjects are required to

watch different rendered videos distorted by various network

conditions as well as bitrate adaptation algorithms and rate

them. Based on the ratings, we can infer the weights. With

the preference-aware weights, the prediction accuracy of our

QoE model is improved compared to that of the QoE model

designed for the average user.

Then we consider to incorporate preference-aware ABR

into a video streaming system. However, existing state-of-

the-art ABR algorithms fail to achieve this. Rule-based ap-

proaches (e.g., buffer-based approach [6], [7] and rate-based

algorithms [15], [16]) inherently can not be generalized over

different QoE preferences, since their optimization objectives

are predetermined and fixed during the design phase. Data-

driven methods (e.g., MPC [5], Fugu [9] and Pensieve [8]) can

support flexible QoE objectives but lack scalability. In offline

phase, they often learns a representation of the state-decision

mapping (table or neural network) that is optimized for the

predetermined QoE objective. In online phase, the decision can

be quickly obtained according to the representation. However,

each representation only supports one objective unless recon-

structed, and thus it is infeasible to support a huge number of

QoE objectives.

As defined above, user preference refers to the tradeoff

among different metrics. Nevertheless, the state-of-the-art

data-driven methods usually map the states and QoE metrics

into a scalar reward (Pensieve based on reinforcement learning

(RL) [8]) or the best action (MPC [5] or Fugu [9]). The

feedback of the applied bitrate lacks detailed information of

metrics. For this reason, and inspired by [17], [18], we

leverage supervised learning (SL) perspective on learning
to act, which is superior to RL when temporally vectorial

feedback is available. Specifically, we directly predict the

influence on each metric of taking different actions with SL

under different user preferences. Our aim is that when the

preference-aware QoE model is given, the preference-aware

ABR algorithm optimizes for a specific user scalably. To

achieve this, Ruyi’s ABR algorithm is trained with multiple

QoE objectives offline. In the online inference phase, Ruyi can

explicitly make bitrate decisions according to the given QoE

objective. In this way, the ABR achieves scalability as it is

independent on user size and thus can be applicable to any

number of QoE objectives without re-training.

We integrate Ruyi in our chunk-level simulator and imple-

ment Ruyi on Dash.js. Evaluation results show that preference-

aware QoE model can improve the prediction accuracy com-

pared with the QoE model designed for the average user.

Ruyi achieves an improvement of more than 43.52% and

67.20% for half of the users and the users with top 30%

improvement. As for end-to-end QoE, compared to the state-

of-the-art algorithms, Ruyi increases QoE for all users with

up to 65.22%. In testbed experiments, subjects are recruited to

rate rendered videos generated by Ruyi and other comparison

algorithms. Experimental results show that Ruyi have the

highest ratings from subjects.

Our key contributions are:
• We conduct a user study of 90 subjects showing that

there are nonnegligible differences in terms of preference

among different users in Section II.

• We profile the user preference and propose the

preference-aware QoE model in Section III-A.

• We propose an ABR algorithm which can deal with

user preferences scalably in Section III-B to validate the

effectiveness of the preference-aware QoE model.

II. MOTIVATION

With the simple observation that QoE preferences vary

with users, a natural question arises: how different users’

QoE preferences are? This question is critical as diverse user

preferences indicate the necessity of designing user-level QoE

models and ABR algorithms. To answer this question, we

first conduct a user study to collect data and then do data

processing. After that we present key findings from differ-

ent perspectives. Notably, we find non-negligible differences

among QoE preferences, and thus an average user can not

represent all users.

A. User study

To explore whether users have a difference in the perception

of video quality, we conduct a user study in this section. We

first create a set of distorted videos and then recruit some

subjects at college to watch the videos and rate them.

We create a video set of 12 source videos randomly selected

from two public video datasets [19], [20] of four content

genres (animation, sports, nature and game) and 7 network

throughput traces randomly selected from the HSDPA dataset

[21] which contains actual cellular traces and is suitable for

modeling challenging, low bandwidth network conditions. The

chosen traces cover various network behaviors of bandwidth

and variation to cause different video quality distortions. We

use Traffic-Control [22] to replay the traces in Dash.js [23]

and emulate the real streaming process using three ABR

algorithms with different behaviours: BB (buffer-based) [7] ,

RB (throughput-based) [24] and Pensieve (hybrid) [8]. Finally,

we get 252 (12× 7× 3) distorted videos.

With these distorted videos, we conduct a single-stimulus

continuous quality evaluation study at college using Psy-

chopy [25] which automates the process of playing videos and

rating. We collect retrospective QoE ratings in range [1,100]

on 1440p 16:9 computer monitors from a total of 90 subjects

to get the individual overall QoE of each video. Overall, we

gather 90 × 252 = 22680 retrospective ratings for analysis.

More details can be found in Section III-A.

Each subject watches and rates the same video set, so we

can calculate the correlation of ratings for each pair of subjects

to explore how different subjects feel about the same video.

For the given 252 videos, each subject has 252 ratings and

(a) Rating correlation (SRCC) between subjects. (b) Probability Distribution Function of
SRCC between subject pairs.

(c) SRCC and PLCC between subjects and the aver-
age subject.

Fig. 1. Overview of rating correlation.

Fig. 2. Visualization of subjects’ ratings by dividing the videos into different
parts according to the metric levels.

the ranking of these ratings are of concerned. Spearman rank-

order correlation coefficient (SRCC) can be used to indicate

the correlation of the ranking. We calculate the SRCC for the

subjects’ rating sequences of distorted videos. The higher the

SRCC, the higher the correlation between the ratings of the

two subjects, the closer the subjects’ perception of the video

quality, and the more similar the preferences of the subjects.

If the ranking of two ratings sequence is exactly the same, the

SRCC is 1.0. The data processing is introduced in III-A, and

only the results are introduced here.

B. Key findings

(1) Almost 90% of subject pairs are not strongly
correlated. We first present the SRCC of ratings for each

pair of subjects in Figure 1(a). The color of the small square

at the intersection of row i and column j represents the

SRCC between subject i and subject j. Higher SRCC indicates

more similar preferences between subjects. Considering the

symmetry of SRCC heatmap, only the part below the diagonal

is shown. As shown in Figure 1(a), aside from SRCC between

subject i and itself (i.e., 1.0), the largest SRCC between

other pairs of subjects is 0.77. An interesting observation is

that some subjects, like Subject16, share relatively similar

preferences with other subjects while some subjects are not

(e.g. Subject5).

We describe the strength of the correlation using the fol-

lowing guide for the absolute value of SRCC [26]: very weak

(SRCC < 0.2), weak (0.2 ≤ SRCC < 0.4), moderate

(0.4 ≤ SRCC < 0.6), strong (0.6 ≤ SRCC < 0.8) and very

strong (SRCC ≥ 0.8). As Figure 1(b) shows, almost 90% of

subject pairs have a rank correlation below 0.6, indicating most

of subject pairs are not strongly correlated. Specifically, only

11% pairs of subjects are strongly correlated while almost a

quarter of subjects are weakly correlated. The remaining 65%

are moderately correlated.

From Figure 1(a), we observe that some subjects share

relatively similar preferences with other subjects while some

subjects are not. In order to characterize this difference among

subjects, we calculate the average SRCC of each subject and

other subjects, whose distributions are plotted as the blue line

in Figure 1(c). In particular, most subjects are only moderately

correlated with others, and no subjects are strongly corre-

lated. For completeness, Pearson linear correlation coefficient

(PLCC) results (i.e., green line in Figure 1(c)) are also shown,

which have the same trend as SRCC.

Apart from the above analysis on overall rating correlations,

we also investigate rating distributions according to different

QoE metrics. Specifically, we divide the distorted videos

according to VMAF and rebuffering. VMAF is divided into 4

levels, and rebuffering is divided into 3 levels. As a result,

these distorted videos are divided into 12 parts. Then for

videos in each part, the corresponding ratings of all subjects

are shown in Figure 2. Apparently, it can be observed that

subject ratings have different distributions in distinct metric

levels. This observation is within expectation. Intuitively, for

the videos with very high/low quality, users tend to give

relatively consistent high/low ratings. Contrarily, for videos

with medium quality, subject ratings may have large variances.

As exemplified in Figure 2, the box in the first row and fourth

Fig. 3. Comparison of Ruyi and existing methods.

column has the highest mean score (72) with the least standard

deviation (11.24). Besides, the box in the third row and third

column has the largest standard deviation (21.04).

(2) The average user can not represent all users. Existing

QoE models and ABR algorithms try to optimize QoE based

on an average user as Figure 3 shows. Here, we further inves-

tigate whether the average user can represent all users well.

First, we construct an average user whose rating for a video

is the average rating of all the subjects. We calculate SRCC

and PLCC between each subject and the average user, whose

distributions are plotted as the red lines in Figure 1(c). More

than 50% of subjects have a relatively low correlation (lower

than 0.7) with the average user, indicating that the average

user can not represent all users. This further enhances our

motivation: when considering user preference, there should be

ample room for QoE improvement. To unleash this potential,

we propose the user-aware QoE model and ABR algorithm.

III. RUYI’S DESIGN

So far we have shown that user preference is a key factor

for the improvement of user QoE. To boost QoE, we propose

Ruyi, a video streaming system consisting of two components

(Figure 4): Preference-aware QoE model and user-specific

ABR algorithm. Next we introduce these two components in

Section III-A and Section III-B respectively.

A. Modeling preference-aware QoE

Different from existing average QoE models, we build a

specific QoE model for each subject. Apparently, ratings are

needed for each specific subject. In this work, we obtain these

ratings based on the measurement study in Section II. The

procedure of our preference-aware QoE modeling is described

as follows. First, we describe the quality control of subject

ratings. After that, we show the data processing of subject

ratings. Finally, we encode user sensitivities towards different

QoE metrics into the preference-aware QoE model.

Quality control of subject ratings. Since the subject

ratings may be noisy, we take several principled measures

to control rating quality. First, before the rating process, the

subjects are required to fill out a questionnaire about QoE

preferences. In this way, subjects are able to get familiar with

the QoE metrics and their preferences. Besides, subjects are

required to rate based on consistent criteria. To get the subjects

familiar with the video quality ranges, two reference videos

with the best and worst quality are played. In rating process,

for different subjects, the distorted videos are randomly played

to eliminate biases caused by the viewing order. To avoid

subject fatigue in the nearly two-hour rating process, each

subject can take a five-minute break after rating a third of

Preference-aware
QoE modeling
()

Video Player

User-aware
ABR

()

Ratings
QoE
model

Request

Chunks

Video Server

Fig. 4. System overview of Ruyi.

distorted videos. Furthermore, we set up some rejection criteria

to get reliable quality ratings. Specifically, we insert a video

with the highest VMAF and no rebuffering as a reference

video. If the subject does not give this video the highest rating,

then the ratings of this subject will be rejected.

Following data collection, we process the collected ratings

to eliminate biases. First, we analyze the rating sequence

of each subject and find that the ratings conform to normal

distribution. Then, we apply normalization to the collected

ratings to prepare for the following QoE modeling. The

ratings of different subjects usually fall in different ranges. For

example, subjects who are accustomed to rate highly may give

all ratings higher than 60. In order to normalize the subject’s

rating in the same range, for the rating sequence xi, we apply

(xi−xmin)×100/(xmax−xmin) to each rating where xmax

and xmin represent the maximum and minimum values of a

subject’s rating respectively.

Encode user sensitivities towards different QoE metrics.
As mentioned above, Ruyi is based on the representative

additive QoE models. As a result, the perceived QoE of video

j for user i can be written as:

QoEij = wi · qj , (1)

where wi represents the preference weights of user i and qj
denotes the QoE metrics of video j. In the additive QoE model,

overall QoE is the sum of the QoE of all chunks. So we can

write Equation 1 as:

QoEij = wi ·
N∑

k=1

mk, (2)

where mk = (vk, rk, sk) is the vectorial meta metrics of

chunk k and N is the number of chunks of video j. vk, rk and

sk represent the VMAF, rebuffer and quality switch for chunk

k respectively. The range of VMAF is [0,100] and the rebuffer-

ing is counted in frame numbers. Since wi = (wiv, wir, wis)
represents the QoE model of user i and is the same to all

chunks:

QoEij =

N∑
k=1

(wiv, wir, wis) · (vk, rk, sk). (3)

Next we present how to infer the weights wi for each

user. Given M rendered videos distorted by different network

conditions, we get M ratings of user i, which represent

the corresponding perceived QoE. With the rating QoEij

and video metrics (vk, rk, sk) known in advance, we can

write M equations for each user i, QoEij = wi · qj where

j = 1, 2, ...,M . Finally, we can infer wi using the linear

regression for user i.

B. Ruyi’s ABR design

Existing ABR algorithms ignore different user preferences,

which may hinder QoE improvement. To this end, we propose

Ruyi’s ABR algorithm in this section. Ruyi leverages the

supervised learning perspective on learning to act. Specifically,

Ruyi directly predicts the influence on each metric after

taking different actions. In this way, Ruyi’s ABR can optimize

towards given user preferences.

We use a general setting where an agent interacts with an

environment like in RL. At each time step t, the agent receives

the observation ot and chooses an action at to maximize the

objective. ot consists of two parts st and mt, where st includes

network conditions as well as video player measurements, mt

represents the meta metrics directly affecting users’ QoE and

at represents the bitrate. After applying the action, the state

of the environment transits to st+1 and the agent receives the

influences of that action on QoE meta metrics mt which acts

as the temporally vectorial feedback.

With the definition of the preference-aware QoE model

in Section III-A, the total optimization objective of Ruyi

u(m,w) can be expressed as follows:

u(m,w) = w ·m, (4)

where w represents the user preference and m =
〈mt, ...,mt+n〉 represents present and future QoE metrics of

different temporal offsets.

The key design is that we directly predict future measure-

ments, i.e., meta QoE metrics m, with a neural network as our

evaluation function Q(o, a, w). As shown in Figure 5, Ruyi

is designed under the general framework for value function

approximators [27]. We decouple the evaluation and decision

process by explicitly introducing the user preference w into

Ruyi to enable scalability. During training, Ruyi’s ABR grad-

ually learns to make better ABR decisions with preference-

aware QoE objectives. During online inference phase, Ruyi

chooses the best bitrate that maximize an preference-aware

QoE objective according to the linear combination of the

output of evaluation function and the preference w. For

different users with distinct QoE models, we just modify the

corresponding parameters of QoE model without modifying

the ABR logic or retraining the ABR.

1) Evaluation function approximator: Leveraging the con-

cept of Universal Value Function Approximator [27], [28],

we design a customized neural network (valueNet) as our

evaluation function.

Inputs: After the download of each chunk t, Ruyi’s agent

takes state inputs st = (xt, τt,nt,vt, bt, ct, lt) to its neural

networks. xt is the network throughput measurements for the

past k video chunks; τt is the download time of the past

k video chunks, which represents the time interval of the

throughput measurements; nt is a vector of available sizes

for the next video chunk; vt is a vector of available VMAF

values for the next video chunk; bt is the current buffer level;

ct is the number of chunks remaining in the video; and lt is the

bitrate at which the last chunk was downloaded. Besides, video

… …

Fig. 5. ABR framework of Ruyi. The inputs are observations (o), meta metrics
(m) and user preferences (w). The output Q is the prediction of meta metrics
on different actions.

player measurements of the last downloaded chunk mt are as

the second part of the inputs. It includes the VMAF of the

last downloaded chunk, the rebuffering caused by downloading

the last chunk and the quality switch. We also add the user

preference w as input which influences the optimal strategy

and the final evaluation result.

Outputs: In this work, we directly predict the future QoE
metrics. Since we need to maximize the user’s long-term QoE,

we adopt the value concept to model the meta metrics i.e., m.

To explicitly optimize for a given QoE objective, we split the

conventional action value Q(o, a) into several action-metric

values, which only model the value for one meta metric. Thus

we can predict the QoE of each action under any preference

w. Recall that the standard value function is defined as the

expected cumulative discounted reward over all future steps,

denoted as Q∞. However, since the network condition changes

dynamically, the long-term uncertainty may hurt the prediction

accuracy. Thus we use enough short-term value predictions

{Qt|t = 1, 2..., n} as the output, where t denotes the look-

ahead step. Combing the above two modifications, the output

of the valueNet is Q(o, a, w) = {Qt(o, a, w)|t = 1, 2, .., n},

where n can be adjusted according to the network condition.

Neural network architecture: The predictor Q is a deep

network and the structure is shown in Figure 6. To conduct

feature extraction more efficiently, we use the convolution

layer for the vectorial state input and merge its output with

other scalar state and measurement inputs. For the preference

input w, we use fully-connected layers and merge the output

with other features extracted from state inputs. Then we use

a dueling architecture [29] to enhance the value prediction.

Specifically, we split the features into two stream: an expecta-

tion stream E which predicts the value over this observation

and an action stream A reflects the fine differences between

actions. Finally, the expectation stream E is added to each of

action stream Ak where k is the dimension of actions. The

detailed parameters are shown in Section IV.

2) Training and inference: We train the valueNet us-

ing a variant of Deep Q-learning algorithm [30] with the

experience replay technique. The agent interacts with the

environment and collects a set of experiences D where

D = {(oj , aj , wj , fj)}Tj=1. (oj , wj) is the input of the neural

network and aj indicates the action that we are predicting

Fig. 6. Neural network structure. Inputs: network states (s), meta metrics
(m) and user preferences (w). To enhance user preference, w is contacted in
each neural network layer.

the subsequential influence for. fj is the label of trajectory j
which consists of multiple metric triples where each triple fjt
is constructed as follows:

fjt(a) =

{
mj+1, t = 1,

mj+1 +Qt−1(oj+1, a, wj+1), t > 1.
(5)

The direct optimization objective is to minimize the following

regression loss:

L(θ) =
T∑

j=1

‖Q(oj , aj , wj)− fj(a
′)‖2 , (6)

where a′ = argmaxa
∑n

t=1 fjt(a).
With this objective, we train the valueNet with supervised

learning to explicitly approximate the future metrics. Then

we can get the best action to maximize the total optimization

objective u(m,w) of our problem. Specifically, in the offline

training, the user preference w for each episode is generated

at random. Each value is sampled uniformly from a predefined

reasonable range. The agent follows an ε-greedy policy: it

acts greedily according to the current user preference w with

probability 1-ε, and selects a random action with probability

ε. The value of ε is initially set to 1 and is decreased during

training according to a fixed schedule. In online phase, Ruyi

takes the action that yields the best predicted outcome:

argmax
a

w� ·
n∑

t=1

Qt(o, a, w). (7)

where w� · ∑n
t=1 Qt(o, a, w) can be treated as a discounted

form of the optimization objective Equation (4).

IV. IMPLEMENTATION

Video system implementation. We implement Ruyi based

on DASH.js [23] which is a widely used open source video

player. Prominent ABR algorithms, (i.e., BB, MPC and Pen-

sieve) are configured and can run in DASH.js. We use a

PC (Intel(R) Core(TM) i3-2120 CPU@3.30GHz) as the video

server and a laptop (ASUS-N551JW) as the client where ABR

algorithms are located. The first time to fetch a new video,

the manifest file is downloaded. We augment it by adding

VMAF of chunks in a new XML field which is used in

the following bitrate decision. We use tc [22] on server to

control the egress traffic and emulate the network variation.

The weights representing user preference needed by Ruyi’s

ABR algorithm is configurable for each user at client and can

be re-loaded if updated.

Parameters setting of Ruyi’s ABR. Here we overview the

hyperparameters in training ABR algorithm in Ruyi. Ruyi uses

k = 6 past chunks as bandwidth measurements. The look-

ahead step is n = 3. There are 3× 3 = 9 neurons of both the

expectation stream and the action stream representing 3 meta

QoE metrics in 3 time offsets. There are 64 neurons in each

hidden layers. The activation function is Leaky Relu and the

learning rate is set to 10−3. These hyperparameters are used

without particularly fine-tuned. We implement Ruyi’s ABR

algorithm with TensorFlow [31] and TFLearn [32].

V. EVALUATION

A. Experimental Setup

Network and video traces. As mentioned in Section II, we

replay the streaming video in 7 traces with various bandwidth

and variance from HSDPA [21] to construct the 252 distortion

videos. We train the preference-aware QoE model on a subset

of 216 videos obtained in the randomly selected 6 network

traces (12 source videos, 6 network traces, 3 ABR algorithms,

216 = 12 × 6 × 3) and test them on the remaining one

network trace with medium average bandwidth, i.e., the rest

36 videos (36 = 12 × 1 × 3), to evaluate the accuracy of

preference-aware QoE model. Besides, the network traces used

for training two learning ABR algorithms (Pensieve and Ruyi)

and testing all ABR algorithms are randomly selected from

HSDPA dataset [21]. Our evaluation use the test video selected

from the LIVE-NFLX-II video dataset [19]. This video is

encoded by the H.264/MPEG-4 codec at bitrates in {300,

750, 1200, 1850, 2850, 4300}kbps (which correspond to video

levels in {240, 360, 480, 720, 1080, 1440}p).

Comparison algorithms. We compare Ruyi with the fol-

lowing algorithms with different adaptive strategies:

• Buffer-based adaptation (BB) [7] without specific QoE

models: chooses the chunks according to the client buffer.

• MPC [5] (with the average QoE model): chooses the

chunks to maximize the QoE model of the average user

in our dataset over a horizon of 5 future chunks.

• Pensieve [8] (with the average QoE model): chooses the

chunks with the pre-trained learning-based ABR algo-

rithm towards the average user. We re-train Pensieve with

the average QoE model with our collected data.

Performance metrics. To show the improvement of QoE

model when considering user preference, we evaluate the

performance of our model with Pearson’s Coefficient (PLCC)

and Spearman’s Coefficient (SRCC). Besides, we use QoE and

QoE gain (((Q1 − Q2)/Q2)) of one ABR (Q1) over another

(Q2) to show the efficiency of Ruyi system.

B. Effectiveness analysis of preference-aware QoE model

We show the preference-aware weights of all 90 subjects

we recruit (the red points) as well as the average user (the

blue point) in Figure 7 (derived as Section III-A shows).

Fig. 7. QoE models of all users, which are expressed
by preference-aware weights. The blue point represent
the average user and red points represent all other users.

Fig. 8. Differences of the preference-aware
weights between the average user and other users.

Fig. 9. QoE prediction accuracy improvement when
comparing preference-aware QoE model to the av-
erage QoE model.

Apparently, it can be observed that the average QoE model

is located in the center of other models. This observation is

within expectation. Besides, we observe that the QoE model

varies with users and it is hard to divide them into several

categories. This result indicates that preference-aware QoE

improvement is needed and that the average user can not

represent all users. What’s more, we show the difference of

the three weights between each user and the average user

in Figure 8. We observe that, compared with the average

user, other users show the largest difference in the rebuffer

weight and the smallest difference in the VMAF weight. It

indicates that users show the largest preference variety in

rebuffer perception while the smallest in VMAF.

Then, we present the improvement of QoE model prediction

accuracy of the subjects in Figure 9. We calculate SRCC

and PLCC to measure the increase, and they show the same

trend. We use SRCC in the following description. For each

subject, we test the preference-aware QoE model and the

average model on the test dataset of 36 videos. For the

test video sequences, we get the scores predicted with the

preference-aware QoE model and calculate the SRCC of these

scores and the ratings of subjects i (SRCCi). We get the

SRCC of average model in the same way (SRCCa). Then

the difference can be calculated as SRCCi − SRCCa and

presented in Figure 9 to show the QoE model prediction

accuracy. Compared with the average QoE model, using the

preference-aware QoE model brings an increase of more than

43.52% and 67.20% of QoE model prediction accuracy for

half of the users and the top 30% users (the top 30% of users

most impacted). The results show the effectiveness of user-

aware QoE model.

C. End-to-end QoE evaluation

We evaluate Ruyi with other ABR algorithms in both

simulation environment and DASH.js.

1) Simulation:
Overall QoE gains. We present the overall QoE and QoE

gains in Figure 10. We find that Ruyi outperforms other

algorithms which equipped with the average QoE model (MPC

and Pensieve) and without QoE models (BB). Figure 10(a)

shows the QoE of Ruyi, BB, MPC and Pensieve across all test

network traces. From left to right are the QoE for all users,

the improvement top 50% users, top 15% users and top 5%

users. For top 5% users, compared to BB, MPC and Pensieve,

Ruyi achieves improvements of 26.3%, 24.7%, and 18.2%

respectively. Moreover, the average performance improvement

decreases with the number of users increases. The reason is

that some users who are close to the average user have less

improvement than users who are far from the average user.

For all users, compared to the baseline BB, Ruyi has 10.6%

QoE improvement on average.

Figure 10(b) provides more detailed results which shows

the distributions of QoE gains for all users. Ruyi achieves

a positive gain on all users whereas MPC achieves a positive

gain on 33.3% users. For Ruyi, all users achieve a performance

improvement of more than 4% whereas Pensieve achieves

that on 55.6% users. What’s more, Ruyi obtains over 10%

QoE gains on about 17.8% users with up to 65.22%. We also

present that Ruyi can reach a wide range of performance by

flexible adjusting the user’s preference in Figure 10(c). We

choose 4 example subjects whose QoE models are different

(Ruyi1, Ruyi2, Ruyi3 and Ruyi4 for Subject2, 59, 85 and

41 respectively) and run experiments on 1 example testing

network trace. The preference weights over different QoE

metrics of the 4 subjects are (0.33, -0.92, -0.46), (0.40, -

0.60, 0.32), (0.55, -0.41, -0.27) and (0.65, -0.34, 0.15). Other

comparison ABR algorithms optimize towards the average

user and can reach only one result point shown as red points

in Figure 10(c). Meanwhile, Ruyi can reach a wide range as

long as the user preferences are given.

QoE breakdown. To better understand the QoE gains

obtained by Ruyi, we analyzed the achieved meta metrics

for each user. Specifically, we present the preference-aware

weights of each user and the achieved QoE metrics, i.e.,

VMAF, the rebuffering time and switches of VMAF, in

Figure 11. Each dot in the figure represents a user and the

value is the average of metric on all testing traces.

As shown in Figure 11, there is an approximate linear rela-

tionship between the achieved VMAF and the VMAF weight

of different users. The larger the VMAF weight is, the more

the users care about VMAF and the larger the value achieved

(a) Overall QoE of users. (b) QoE gains over BB of different users. (c) Ruyi achieves a wide range of video quality
flexibly.

Fig. 10. Overall performance of Ruyi.

(a) VMAF (b) Rebuffering (c) Switch

Fig. 11. QoE breakdown of Ruyi for all users.

by the algorithm is. The achieved average VMAF across all

test traces ranges from 47 to 53. Similarly, for rebuffering,

when the weight is less than 0, the greater the absolute value of

the weight, the less users prefer the rebuffering. Consequently,

the resulted rebuffering time is smaller. Switching shows the

similar results as rebuffering. Besides, we find the difference

between the achieved VMAF values of users is less than that

of the other two metrics, i.e., the rebuffering and the switch.

This result also corresponds to Figure 8, where the weight

difference of VMAF for different users is the smallest among

the three metrics. Figure 11 directly proves that Ruyi has the

ability to optimize towards different preferences.

Bandwidth savings. To investigate bandwidth savings, we

present the QoE obtained with unit bandwidth (denoted as

QoE/BW) in Figure 12. For each network trace, we calculate

QoE/BW for each user and then get the average of all users

on that network trace. For all testing network traces, we

show the differences between QoE/BW for Ruyi and the best

performing comparison algorithm Pensieve in Figure 12. Ruyi

outperforms Pensieve (differences > 0) in about 72.3% traces.

The average QoE/BW across all testing network traces of Ruyi

and Pensieve are 0.408 and 0.376. That means Ruyi saves

8.51% bandwidth when achieving the same QoE as Pensieve.

Furthermore, we calculate the average QoE/BW of the baseline

BB and find Ruyi achieves 20.35% bandwidth savings.

2) Testbed Experiment:
We evaluate Ruyi and other ABR algorithms on Dash.js.

The network condition is set by tc [22] with the random

Fig. 12. QoE v.s. bandwidth usage.

selected traces of HSDPA dataset. We replay the videos with

all the evaluated ABR algorithms and get the resulted videos.

For the resulted videos, we analyze them and calculate the

VMAF, rebuffering time and switches. With these metrics

and user QoE models, we calculate the QoE and show the

normalized QoE (obtained with Ruyi as the standard) for two

typical example users: User 30 and User 41 in Figure 13(a).

User 30 is more sensitive to rebuffering events, while user 41

is more sensitive to high visual quality. Figure 13(a) shows

that Ruyi performs the best. For User 30, Pensieve performs

the worst due to the longest rebuffering time. For User 41,

BB performs the worst due to the lowest VMAF value. This

result shows that the ABR without specific QoE models or the

ABR with an average QoE model is not sufficient and will not

(a) Normalized QoE. (b) User ratings.

Fig. 13. Performance of Ruyi in Dash.js.

consistently perform well towards various user preferences. On

average, Ruyi achieves 1.69 times the QoE of Pensieve over

the two users (2.23 times on User30, 1.16 times on User41).

In addition to the QoE calculated with the preference-aware

QoE models and the meta metrics, we let the corresponding

users watch four videos out of the above resulted videos and

rate in five scales. The four videos are generated with a same

network trace and four evaluated ABR algorithms. The ratings

are presented in Figure 13(b) which show the same trend as

the calculated QoE.

VI. RELATED WORK

Video QoE models. Video QoE models has two general

categories: visual quality assessment (VQA) which focuses on

pixel-level perception of users and QoE models considering

streaming-related distortion and perception. VQA methods

include traditional models (e.g. QP [33], PSNR [34], SSIM

[35]) and data-driven models (e.g. VMAF [36], DeepVQA

[37]). Besides, streaming-related QoE models for adaptive

streaming videos attract many research efforts. The earliest

ones start with only rebuffering being considered which are not

accurate to model user QoE in adaptive streaming [38], [39].

After that, average bitrate is complemented to improve the

prediction accuracy and the QoE is represented as the weighted

sum of the average bitrate and the rebuffering where the

trade-off weights should be determined [40], [41]. Motivated

by observations that frequent quality switches degrade users’

QoE [42], some models take quality switching into account

[5], [6]. As bitrate is inadequate to model visual perception,

many works suggest to replace the average bitrate by video

quality assessment models [12], [13]. Thus, we use VMAF

instead of bitrate to improve the prediction accuracy of the

QoE model. In addition to the above models, machine learning

are also used to model QoE [3], [4]. However, these learning

models usually overfit the subjective opinion scores and the

performance is affected by the limited users’ scores.

Adaptive bitrate (ABR) algorithms. The earliest ABR al-

gorithms can be primarily grouped into two classes: rate-

based and buffer-based. Rate-based algorithms [15], [16] are

hindered by the biases present when estimating available

bandwidth on top of HTTP. Buffer-based approaches [6],

[7] solely consider the client’s playback buffer occupancy

when deciding the bitrates. BB [7] leverages a simple but

effective method to maintain the buffer occupancy at a safety

range. After that, ABR algorithms which combine these two

techniques [5], [9], [16] are proposed. MPC [5] employs

model predictive control algorithms that use both throughput

estimates and buffer occupancy information. However, MPC

relies heavily on accurate throughput estimates which are

not always available. Fugu [9] is proposed to improve the

performance of bitrate adaptation which is based on MPC

but replaces its throughput predictor with a deep neural

network. A separate line of work is to leverage RL [43]–

[46]. These schemes apply RL in a “tabular form”, which

stores the value function for all states and actions explicitly.

Pensieve [8] leverages the deep RL method that represents the

ABR algorithms as a neural network. This allows Pensieve

to optimize its policy for different network characteristics and

QoE metrics from experience. However, Pensieve is trained to

optimize for a predefined QoE objective and can not adjust for

different objectives online. MPC and Pensieve are objective-

based methods, and a recent work combines BB and RL

enabling the objective awareness [47]. We leave the extension

of these works to support multi-objective as our future work.

VII. DISCUSSION

Influence of content. Regardless of whether user preferences

are considered, video content has a great impact on QoE of

users. If the user is interested in the video content, or if the

video content is enjoyable, then the user’s tolerance for poor

quality will be higher. A previous work does bitrate adaptation

with the consideration of video content [48] for QoE models

in additive form. Our work is orthogonal and complementary

to this, allowing for more fine-grained user-specific bitrate

adaptive control. Furthermore, other dimensions, such as the

device, the energy, and the type of videos, considered in user

preference-aware bitrate adaptation are left as future work.

Inapplicable situations. For the form of QoE models which

are not additive with several preset meta metrics, such as end-

to-end learning based QoE models, Ruyi is not applicable

due to the design of directly predicting the impact of current

actions on those metrics in the future. Instead, if the metrics

that affect the users’ experience are clear, Ruyi will perform

well with these QoE models which occupy a large proportion

and are widely used in modern ABR systems.

VIII. CONCLUSION

In this paper, we investigate the differences in user prefer-

ences. We conduct a user study with 90 subjects and find that

the average user can not represent all users. Then we propose

Ruyi, a video streaming system that incorporates preference

awareness into both the QoE model and the ABR algorithm.

Our simulation results show that, Ruyi increases QoE for all

users. In testbed experiments, results show that Ruyi has the

highest ratings from subjects.

IX. ACKNOWLEDGEMENT

This work was supported by National Key R&D Program

of China Grant (No. 2018YFB1802202) and NSFC (No.

6213000078 and No. 61872211).

REFERENCES

[1] B. Han, F. Qian, L. Ji, and V. Gopalakrishnan, “Mp-dash: Adaptive video
streaming over preference-aware multipath,” in Proceedings of the 12th
CoNEXT, 2016, pp. 129–143.

[2] “Cisco annual internet report (2018–2023) white paper.”
https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html.

[3] W. Robitza, M.-N. Garcia, and A. Raake, “A modular http adaptive
streaming qoe model—candidate for itu-t p. 1203 (“p. nats”),” in 2017
Ninth QoMEX. IEEE, 2017, pp. 1–6.

[4] N. Eswara, S. Ashique, A. Panchbhai, S. Chakraborty, H. P. Sethuram,
K. Kuchi, A. Kumar, and S. S. Channappayya, “Streaming video qoe
modeling and prediction: A long short-term memory approach,” IEEE
TCSVT, vol. 30, no. 3, pp. 661–673, 2019.

[5] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic ap-
proach for dynamic adaptive video streaming over http,” in Proceedings
of the 2015 ACM SIGCOMM, 2015, pp. 325–338.

[6] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “Bola: Near-optimal
bitrate adaptation for online videos,” in INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications,
IEEE. IEEE, 2016, pp. 1–9.

[7] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,
“A buffer-based approach to rate adaptation: Evidence from a large
video streaming service,” in Proceedings of the 2014 ACM conference
on SIGCOMM, 2014, pp. 187–198.

[8] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proceedings of the 2017 ACM SIGCOMM, 2017,
pp. 197–210.

[9] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis,
and K. Winstein, “Learning in situ: a randomized experiment in video
streaming,” in NSDI 20, 2020, pp. 495–511.

[10] Z. Duanmu, W. Liu, D. Chen, Z. Li, Z. Wang, Y. Wang, and W. Gao, “A
knowledge-driven quality-of-experience model for adaptive streaming
videos,” arXiv preprint arXiv:1911.07944, 2019.

[11] Y. Zhu, A. Hanjalic, and J. A. Redi, “Qoe prediction for enriched
assessment of individual video viewing experience,” in Proceedings of
the 24th ACM MM, 2016, pp. 801–810.

[12] A. Bentaleb, A. C. Begen, and R. Zimmermann, “Sdndash: Improving
qoe of http adaptive streaming using software defined networking,” in
Proceedings of the 24th ACM international conference on Multimedia,
2016, pp. 1296–1305.

[13] Z. Duanmu, K. Zeng, K. Ma, A. Rehman, and Z. Wang, “A quality-of-
experience index for streaming video,” IEEE Journal of Selected Topics
in Signal Processing, vol. 11, no. 1, pp. 154–166, 2016.

[14] Y. Zhu, S. C. Guntuku, W. Lin, G. Ghinea, and J. A. Redi, “Measuring
individual video qoe: A survey, and proposal for future directions using
social media,” TOMM, 2018.

[15] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in http-based adaptive video streaming with festive,” IEEE/ACM
Transactions on Networking (TON), vol. 22, no. 1, pp. 326–340, 2014.

[16] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and
B. Sinopoli, “Cs2p: Improving video bitrate selection and adaptation
with data-driven throughput prediction,” in Proceedings of the 2016
ACM SIGCOMM Conference. ACM, 2016, pp. 272–285.

[17] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, “A survey
of multi-objective sequential decision-making,” Journal of Artificial
Intelligence Research, vol. 48, pp. 67–113, 2013.

[18] M. I. Jordan and D. E. Rumelhart, “Forward models: Supervised learning
with a distal teacher,” Cognitive science, vol. 16, no. 3, pp. 307–354,
1992.

[19] C. G. Bampis, Z. Li, I. Katsavounidis, T.-Y. Huang, C. Ekanadham,
and A. C. Bovik, “Towards perceptually optimized end-to-end adaptive
video streaming,” arXiv preprint arXiv:1808.03898, 2018.

[20] Y. Wang, S. Inguva, and B. Adsumilli, “Youtube ugc dataset for video
compression research,” in 2019 IEEE 21st International Workshop on
Multimedia Signal Processing (MMSP). IEEE, 2019, pp. 1–5.

[21] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute
path bandwidth traces from 3g networks: analysis and applications,”
in Proceedings of the 4th ACM MMSys. ACM, 2013, pp. 114–118.

[22] “tc: Linux advanced routing and traffic control.” http:
//lartc.org/lartc.html.

[23] “Dash.js,” https://github.com/ Dash-Industry-Forum/dash.js/wiki.

[24] C. Liu, I. Bouazizi, and M. Gabbouj, “Rate adaptation for adaptive http
streaming,” in Proceedings of the second annual ACM conference on
Multimedia systems, 2011, pp. 169–174.

[25] J. W. Peirce, “Psychopy—psychophysics software in python,” Journal
of neuroscience methods, vol. 162, no. 1-2, pp. 8–13, 2007.

[26] J. Fowler, L. Cohen, and P. Jarvis, Practical statistics for field biology.
John Wiley & Sons, 2013.

[27] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value
function approximators,” in ICML, 2015, pp. 1312–1320.

[28] A. Dosovitskiy and V. Koltun, “Learning to act by predicting the future,”
ICLR, 2017.

[29] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
ICML. PMLR, 2016, pp. 1995–2003.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[31] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th USENIX OSDI’16, 2016, pp. 265–283.

[32] “Tflearn: Deep learning library featuring a higher-level api for tensor-
flow, 2017,” http://tflearn.org/.

[33] H. ITU-T RECOMMENDATION, “264 “advanced video coding for
generic audiovisual services”,” 2003.

[34] A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010
20th international conference on pattern recognition. IEEE, 2010, pp.
2366–2369.

[35] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[36] “Video multimethod assessment fusion.”
https://github.com/Netflix/vmaf.

[37] W. Kim, J. Kim, S. Ahn, J. Kim, and S. Lee, “Deep video quality
assessor: From spatio-temporal visual sensitivity to a convolutional
neural aggregation network,” in ECCV, 2018, pp. 219–234.

[38] K. Watanabe, J. Okamoto, and T. Kurita, “Objective video quality
assessment method for evaluating effects of freeze distortion in arbitrary
video scenes,” in Image Quality and System Performance IV, vol. 6494.
International Society for Optics and Photonics, 2007, p. 64940P.

[39] R. K. Mok, X. Luo, E. W. Chan, and R. K. Chang, “Qdash: a qoe-aware
dash system,” in Proceedings of the 3rd MMSys, 2012, pp. 11–22.

[40] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang,
“A case for a coordinated internet video control plane,” in Proceedings
of the ACM SIGCOMM 2012, 2012, pp. 359–370.

[41] J. Xue, D.-Q. Zhang, H. Yu, and C. W. Chen, “Assessing quality of ex-
perience for adaptive http video streaming,” in 2014 IEEE International
Conference on Multimedia and Expo Workshops (ICMEW). IEEE, 2014,
pp. 1–6.

[42] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, and P. Halvorsen, “Flicker effects
in adaptive video streaming to handheld devices,” in Proceedings of the
19th ACM international conference on Multimedia, 2011, pp. 463–472.

[43] F. Chiariotti, S. D’Aronco, L. Toni, and P. Frossard, “Online learning
adaptation strategy for dash clients,” in 7th MMSys. ACM, 2016, p. 8.

[44] M. Claeys, S. Latré, J. Famaey, T. Wu, V. Leekwijck, D. Turck et al.,
“Design of a q-learning-based client quality selection algorithm for http
adaptive video streaming,” in Proceedings of the 2013 Workshop on
Adaptive and Learning Agents (ALA), Saint Paul (Minn.), USA, 2013,
pp. 30–37.

[45] M. Claeys, S. Latré, J. Famaey, T. Wu, W. Van Leekwijck, and
F. De Turck, “Design and optimisation of a (fa) q-learning-based http
adaptive streaming client,” Connection Science, vol. 26, no. 1, pp. 25–43,
2014.

[46] J. van der Hooft, S. Petrangeli, M. Claeys, J. Famaey, and F. De Turck,
“A learning-based algorithm for improved bandwidth-awareness of adap-
tive streaming clients,” in Integrated Network Management (IM), 2015
IFIP/IEEE International Symposium on. IEEE, 2015, pp. 131–138.

[47] T. Huang, C. Zhou, R.-X. Zhang, C. Wu, X. Yao, and L. Sun, “Stick:
A harmonious fusion of buffer-based and learning-based approach for
adaptive streaming,” in IEEE INFOCOM 2020-IEEE Conference on
Computer Communications. IEEE, 2020, pp. 1967–1976.

[48] X. Zhang, Y. Ou, S. Sen, and J. Jiang, “Sensei: Aligning video streaming
quality with dynamic user sensitivity,” NSDI, 2021.

