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Abstract— The increasingly complicated and diverse applica-
tions have distinct network performance demands, e.g., some
desire high throughput while others require low latency. Tra-
ditional congestion controls (CC) have no perception of these
demands. Consequently, literatures have explored the objective-
specific algorithms, which are based on either offline training
or online learning, to adapt to certain application demands.
However, once generated, such algorithms are tailored to a spe-
cific performance objective function. Newly emerged performance
demands in a changeable network environment require either
expensive retraining (in the case of offline training), or manually
redesigning a new objective function (in the case of online learn-
ing). To address this problem, we propose a novel architecture,
DeepCC. It generates a CC agent that is generically applicable to
a wide range of application requirements and network conditions.
The key idea of DeepCC is to leverage both offline deep reinforce-
ment learning and online fine-tuning. In the offline phase, instead
of training towards a specific objective function, DeepCC trains
its deep neural network model using multi-objective optimization.
With the trained model, DeepCC offers near Pareto optimal
policies w.r.t different user-specified trade-offs between through-
put, delay, and loss rate without any redesigning or retraining.
In addition, a quick online fine-tuning phase further helps
DeepCC achieve the application-specific demands under dynamic
network conditions. The simulation and real-world experiments
show that DeepCC outperforms state-of-the-art schemes in a
wide range of settings. DeepCC gains a higher target completion
ratio of application requirements up to 67.4% than that of other
schemes, even in an untrained environment.

Index Terms— Congestion control, data-driven networking,
multi-objective learning, online learning.

I. INTRODUCTION

THE emerging applications in modern networks have
very different performance requirements. Delay-sensitive

applications, such as Internet telephony or cloud gaming,
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require a low transmission delay as low as a few millisec-
onds [1]. These applications may not benefit from higher
bandwidth. On the other hand, the video streaming or file
sharing, i.e., throughput-sensitive applications, often require
high bandwidth for better performance [2], [3]. In addition,
some applications may provide the different specified demands
of bandwidth and delay to satisfy users’ quality of experience,
such as some WebRTC-based applications [4]. Therefore, the
transport layer should adapt to not only volatile network
conditions, but also different application demands [5].

For the last thirty years, traditional TCP congestion
controls (CC) have been dedicated to solving how to adapt to
network conditions. However, they do not work well to satisfy
various performance requirements due to their unaware of
application demands. For example, Cubic [6] as the default
CC algorithm in Linux kernel, uses a hardwired rule to
regulate congestion windows (cwnds) and has no perception
of application requirements. Many recently proposed CC
algorithms, including Copa [2] and BBR [7], are designed
based on their own understanding of throughput/latency
trade-off and share the same limitation as Cubic. Some other
CC algorithms [8]–[12], such as Sprout [8] and Verus [9],
serve for specific applications or network conditions. They
fall short in terms of generalization to adapt to various
performance requirements.

With the diverse requirements of emerging applications, the
learning-based CC becomes a research hotspot recently. These
learning methods are well-suited to learning control policies
without relying on inaccurate assumptions. Rather than using
hardwired rules, these schemes define one objective function
representing a single user-specified trade-off of requirement,
and learn cwnds or sending rate by optimizing the specified
function. For example, Remy [5] generates a decision tree to
optimize an objective function of throughput and delay by
offline learning. PCC [13] performs online exploring for the
objective optimization of throughput and loss. However, they
are limited to optimize only one objective function with fixed
parameters while do not consider the different application-
specific demands. Whenever any new application requirement
emerges or network environment changes, the learning-based
algorithms require carefully redesigning and retuning.

To address this problem, we propose a novel architec-
ture, DeepCC, where the multi-objective congestion control
for various performance goals is generated through machine
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learning methods. When running, it automatically adapts to
application-specific demands and network conditions without
redesigning or retraining efforts. DeepCC is not merely built
upon off-the-shelf learning methods. Instead, DeepCC realizes
this with two key ideas.

First, DeepCC does not have a single fixed objective
function during the training phase. The inflexibility of Remy
and PCC is due to the fact that they only optimize one
objective function during offline training or online learning.
In contrast, DeepCC learns about how it should react to
congestion with various objective functions and in various
networks. DeepCC uses deep neural networks as its core
model, which is well-known to be capable of handling
multi-dimensional inputs and outputs. In DeepCC, these
include the performance targets of throughput, delay, and
packet loss, as well as the network conditions. DeepCC
provides the largest possible flexibility to runtime – different
applications can specify their own performance requirements
during runtime, and even change them on demand. DeepCC
will still work well without retraining.

Second, unlike the existing learning-based CC schemes,
DeepCC leverages both offline deep reinforcement learn-
ing (DRL) and online fine-tuning. Offline and online
approaches have their trade-offs. For example, offline
approaches allow more flexible forms of objective functions
but are weaker in adapting to network conditions. However,
though being more adaptive to network conditions, online
approaches must use special forms of objective functions [13]
because they will impact the online learning speed and results.
DeepCC aims to take the advantages of both approaches.
It learns most of its knowledge through offline training, which
is more focused on supporting flexible objective functions,
while still includes an online fine-tuning phase that handles
dynamic network conditions. This online fine-tuning is much
more efficient than a purely online design because the results
from offline training provide a good starting point and largely
narrow down the search space. The main difference between
DeepCC and other schemes are summarized in Table I.

To the best of our knowledge, DeepCC is the first congestion
control that can optimize the multiple objective functions.
It is also the first CC to combine both offline learning
and online fine-tuning. Though this approach is less seen
in the networking community, it is in fact popular in the
machine learning research and has achieved many state-of-
the-art results [14], [15]. The main contributions are listed
as follows:

• We present a novel architecture named DeepCC, which
can satisfy different performance requirements without
redesigning or retraining efforts. It fully leverages the
power of offline and online learning techniques that
improve the generalization ability for both application
requirements and network conditions (§III).

• We propose a multi-objective DRL algorithm to
learn Pareto optimal (or near optimal) control poli-
cies for different performance trade-offs. Our solu-
tion efficiently explores the wide optimization objective
space and offline learn an optimal (or near optimal)
strategy (§IV-A and §IV-B).

TABLE I

DIFFERENCES BETWEEN DeepCC AND OTHER SCHEMES

• We design an online tuning algorithm for vari-
ous application-specific demands and network condi-
tions. It can dynamically choose one of the learned
Pareto optimal policies to adapt to the real-time net-
work conditions under the guidance of the specific
demand. It greatly facilitates DeepCC to meet the
explicit performance requirements under different net-
work environments (§IV-C).

We implement and evaluate DeepCC in the Mahimahi [16]
emulator and real-world network. Compared against state-
of-the-art schemes, DeepCC achieves a wide range of per-
formance and gains a higher target completion ratio (TCR)
of application requirements up to 67.4% than that of other
schemes, even in an untrained environment (§V and §VI).

II. MOTIVATION AND CHALLENGE

Comparing with traditional congestion control schemes,
learning-based approaches can adapt to network conditions,
such as Remy [5], Indigo [18], PCC [13], and Vivace [17].
Nevertheless, poor generalization ability limits them to work
with changing application-specific requirements and network
conditions. In the following, we first summarize the limitations
of the existing schemes. Then we detail the key challenges that
are tackled by DeepCC’s design.

A. Limitations of the Existing Schemes

We conduct experiments to evaluate the performance of
existing state-of-the-art schemes1 in cellular and Wi-Fi links.
We plot the distribution of throughput and 95th percentile
queueing delay of them in Fig. 1. We then highlight the
limitations with illustrative examples.

Limitation 1: Existing schemes cannot generalize for diverse
application requirements.

Manual policies, such as Cubic [6], allow the senders
to deliver data based on heuristics rather than performance
requirements. Application-specific optimization schemes, such
as Remy and PCC, often do not have general applicability
for diverse performance requirements. A fine-tuned scheme
for one application works poorly for other applications if
performance requirements change.

In principle, the learning-based schemes can support appli-
cation requirements by designing their objective functions.
However, the existing schemes, such as Remy or Vivace,

1The source codes are provided by Pantheon [18].
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Fig. 1. Throughput vs. 95th percentile queueing delay achieved by the existing CC with their objective functions under three network links. All schemes
are repeatedly tested 10 times and each test lasts for 50 seconds.

at least in their current form, only provide three choices of
objective functions. As a direct consequence, they work in
some isolated operating points. As shown in Fig. 1, the family
of Vivace can only operate on the high-throughput area (the
left-top) and cannot achieve low latency, while that of Remy
fails to escape from the scope of low-latency area (the right-
bottom). None of them could cover the Pareto front [19].
Although Remy and Vivace can behave on different trade-offs
with their three objective-specific functions, the performance
range is quite limited so that they cannot satisfy diverse
requirements.

Even if there are infinite objective functions available that
could achieve any trade-offs, it is still non-trivial for the
applications to use such learning-based schemes, e.g., Remy
or Indigo. The main reason is that none of these schemes
provide a systematic approach that could guide the CC to
select the suitable objective function to meet a specific quality
of service (QoS) requirement (e.g., 8 Mbps throughput while
keeping the delay within 70 ms and the loss rate within
1%, the shaded area as shown in Fig. 1(a)). Moreover, the
average queueing delay (calculated as the difference between
the observed round-trip time, i.e., RTT, and the minimum
RTT) and throughput of a single scheme with one objective
function can be highly variable under a single network scenario
in Fig. 1(a), such as PCC or Indigo. Hence, in the view of
the application providers, the existing learning-based schemes
may be still far from satisfactory.

Limitation 2: Existing learning-based schemes cannot gen-
eralize well across a wide range of network conditions.

Except the application-specific demands, congestion control
needs to adapt to a wide variety of heterogeneous network
conditions. The existing online or offline schemes can benefit
from their own properties but still face great limitations.

Schemes relying on offline learning inherently face the
generalization problem. The model or agent (i.e., the learned
control rules) can only be trained with limited data that
cannot cover all the network conditions and thus may overfit
the dataset, at least to some extent. For example, Indigo
could attain low latency within its design scope in Fig. 1(c).
However, its performance can be degraded when the actual
network conditions mismatch the training assumptions [20] as
shown in Fig. 1(b).

Although the online schemes perform at least acceptably
when facing new network condition, the convergence time is
a fundamental problem for them. We compare the convergence
behavior of the above-mentioned schemes as shown in Fig. 15.
It is similar to the results that Vivace claims - PCC converges
slowest [17]. In general, the offline schemes are more stable
than online schemes [21]. This is because the offline schemes
can leverage prior knowledge of networks obtained during
training. In addition, online learning approaches, like PCC and
Vivace, use a well-designed utility function as the optimization
objective and directly adjust the rate during online opera-
tion. Then, if the application requirements change, the utility
functions should be redesigned. It is hard work to design a
utility function that meets diversified application requirements
in dynamic network conditions.

B. Challenge

As many have observed, learning-based congestion control
schemes have emerged in support to adapt to complicated
network conditions. Although these schemes deliver a sat-
isfactory performance of a single specific requirement, they
still have limitations and fail to achieve different trade-offs of
performance requirements. Along this direction, DeepCC is
designed to tackle the following key challenges.

(1) Guaranteeing the application-specific demands. It is
important to guarantee the specified demands for the appli-
cations. However, achieving the specified performance is
non-trivial because CC schemes achieve the performance
unpredictably under complicated network conditions. Further,
learning-based schemes could provide a desired trade-off for
one or a class of applications by defining a fine-tuned objec-
tive function, but it is difficult to achieve the deterministic
performance demands defined by applications or users.

(2) Huge space of optimization objectives. Each metric
of application requirements could span on a large scale. The
diverse requirements with multiple dimensions that fall into
different trade-offs of the performance metrics further make it
harder to deal with. The huge space of optimization objectives
poses a great challenge, especially for reinforcement learning,
which must “explore” the action space in training to learn a
good policy for each optimization objective.
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Fig. 2. The DeepCC architecture.

(3) Poor generalization for learning-based schemes. Online
learning has the ability to adapt to the dynamic network envi-
ronment, whereas the convergence time is too long. By con-
trast, the learned agent or model through offline learning,
which is provided a good starting point by offline learning, can
perform well in the scenarios that are similar to the training
environments. But it could fail to adapt to unseen network
conditions.

III. DESIGN OVERVIEW

In this work, we seek to close the gap between the
congestion control and different applications’ requirements
by proposing DeepCC, a multi-objective CC with various
optimization goals that can adapt to meet different targets of
application-specific demands (See Table II for an explanation
of the notation). DeepCC does not need to modify the TCP
protocol and only obtains the QoS requirements from the upper
layer applications. DeepCC is not merely built upon off-the-
shelf reinforcement learning approaches. Instead, it leverages
several ideas to solve the above-mentioned challenges.

In conventional learning-based congestion control, the agent
can collect network states from environments and learn to
improve its output action based on its fine-tuned optimization
objective. However, this approach is unaware of the different
application demands so that its achieved performance can be
away from the actual application requirements. To cope with
the problem, we propose an online algorithm to fulfill the
application-specific demands (e.g., 10 Mbps throughput while
keeping the delay within 100 ms and the loss rate within 1%).
The online algorithm allows DeepCC to adaptively tune the
policy according to the application demands.

The learning-based agent can explore diverse network envi-
ronments to enrich its experience and try to meet all metrics
of application requirements, including different throughput,
delay, and loss rate. However, the huge space of optimiza-
tion objectives makes it very difficult to train an optimal
or near-optimal agent for massive application requirements.
To handle this problem, DeepCC does not directly optimize
for diverse performance requirements instead it optimizes for
different trade-offs of performance metrics as an intermediate
objective, using the weights to represent different trade-offs.

TABLE II

NOTATION

Specifically, DeepCC leverages multi-objective optimization to
offline generate a flexible agent that is able to learn the Pareto
optimal or near-optimal policies and be tuned for different
objectives after training.

It is well known that poor generalization is a key problem
of learning-based schemes. To mitigate the generalization
problem, we propose the two-stage learning architecture which
leverages the benefit from both offline and online learning.
In our cases, even if the same application requirements,
DeepCC should adopt different policies in different network
environments. In this way, DeepCC continuously adjusts the
weights of the model obtained from offline training through
online tuning algorithm to meet the application’s target under
different environments. Fig. 2 shows the high-level overview
of DeepCC’s design which contains two stages.

In the offline stage, DeepCC learns a set of Pareto opti-
mal policies (i.e., the policy network with different goals as
input condition in Fig. 2) under different network conditions.
Considering the diverse performance requirements, we start
by defining a group of weights, which expresses the differ-
ent trade-offs (termed goal) of the relative preferences for
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throughput, delay, and loss rate (§IV-A). The policy network
takes the goal and the network conditions (termed state)
as input and outputs the sending rate. DeepCC trains the
policy network to optimize for different goals through a large
number of offline experiments from the emulator (§IV-B).
The well-learned policy network can build a good relationship
between the input conditions and the sending rate over all
possible performance trade-offs.

In the online stage, DeepCC matches the network condition
and performance requirement (termed target) to the sending
rate (termed action) using the learned Pareto optimal policies.
At the start of the connection establishment, applications
provide their requirements of bandwidth, delay, and packet loss
to the policy controller (§IV-C). At runtime, the controller con-
tinuously detects the changes in the difference between current
performance and requirements, and automatically chooses the
most proper policy (represented by goal) that can best fit the
requirements. Then the best sending rate is decided according
to the selected policy.

IV. DETAILED DESIGN

In this section, we present the detailed design of DeepCC.
We begin with describing the multi-objective function. Then
we explain the offline training process with multi-objective
optimization and the online tuning algorithm.

A. Representing Multi-Objective Function

Note that it is non-trivial to directly learn to achieve the
various performance requirements offline, since the application
requirements may fall in a large performance space especially
when considering different network conditions. Hence, we use
the relative instead of the absolute value to express our
objective function in offline learning. Further, the goal as a
relative weight of the performance metrics can become a direct
“knob” to be tuned by users or applications online to achieve
the application desired performance.

The multi-objective expression includes not only
multi-dimensional performance metrics, i.e., throughput,
delay, and loss rate, but multiple trade-offs between them.
The multi-objective function is composed of measurement
and goal. Among them, the measurement indicates the current
transmission performance that includes the throughput, delay,
and loss rate. Table II summarizes these symbols.

Measurement: The measurement m is an n-dimensional
vector as m = (m(1), m(2), · · · , m(n)). Considering the per-
formance metric after the action taken in congestion control,
we set n = 3 and the mt at time step t as:

mt = (
throughputt

throughputmax
,

delayt

delaymin
, loss ratet) (1)

At time step t, the throughputt is the instantaneous observed
total throughput of the sender and the throughputmax is the
maximum value among all the history throughput; delaymin

is the minimum delay of the current connection; delayt is the
95th percentile delay; loss ratet is the observed loss rate.

Goal: The goal gt is also an n-dimensional vector as:

gt = (g(1)
t , g

(2)
t , · · · , g(n)

t ) s.t.

n∑

i=1

g
(i)
t = 1 (2)

where g
(i)
t is the relative weights of the corresponding perfor-

mance metric at time step t. And the sum of all g
(i)
t equals

one. In CC problem, the goal represents the different trade-offs
between throughput, delay and loss rate, i.e., n = 3. The larger
g
(1)
t signifies that higher throughput is preferable. The larger

g
(2)
t and g

(3)
t indicate that the lower delay and loss rate are

preferable respectively.
Reward: Similar to the reward function of DRL, Remy

and PCC use the objective function or the utility function
to evaluate the transmission performance and take them as
the feedback that helps decision making. However, they only
use two of the three performance metrics. Specifically, their
objective function includes multiple dimensions rather than the
different trade-offs between the performance metrics.

In our approach, the multi-objective function, i.e., reward,
is set to reflect the desired performance of throughput, delay,
and loss rate that we wish to optimize under different rela-
tive weights. So we set the reward rt as the compound of
measurement and goal at each time step t. For congestion
control, we set the performance of throughput as an award,
while the performance of delay and loss rate as a penalty.
Therefore, when computing a reward, the 2nd-dimension and
3rd-dimension of measurement use the negative value of them.

rt = g
(1)
t m

(1)
t − g

(2)
t m

(2)
t − g

(3)
t m

(3)
t /threshold (3)

The threshold represents the tolerance of packet loss.
By explicitly introducing multi-objective reward, the agent
learns multiple objectives with different goals. Moreover, the
decision-making does not depend on the intermediate reward
in one step, but takes the expected cumulative reward Jmul =
E[

∑N
t=0 γtrt] as the objective, where γ ∈ (0, 1) is a discount

factor and N is the total steps.

B. Offline Learning With Multi-Objective DRL

We consider a DeepCC agent generated by the
multi-objective DRL through offline learning, which can
potentially deal with the multiple objectives, the continuous
decision space, and the adaptation problem by leveraging the
great power of deep neural networks (NNs). Unfortunately, the
basic Deterministic Policy Gradient (DDPG) algorithm [22],
an advanced DRL algorithm that deals with the continuous
action space, could not directly support for DeepCC
with multi-objective optimization due to its limited
expressiveness of the fixed scalar reward. Recently, some
novel multi-objective reinforcement learning algorithms have
been proposed, such as DFP [23] for the game Doom and
UVFAs [24] for Atari games. However, both DFP and UVFAs
cannot directly be applied to continuous control problems.

Hence, we design a multi-objective DDPG algorithm
based on basic DDPG architecture. Specifically, we use a
multi-objective function as the reward function of DeepCC
(provided by §IV-A), expressed as the combination of the goal
and performance metric measurement.

Unlike traditional CC schemes that use hardwired rules to
regulate cwnds or sending rate, DeepCC agent learns the flexi-
ble policy of sending rate directly from the agent-environment
interactions. As shown in Fig. 3, the input of agent includes
not only network state but also measurement and goal. Then
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Fig. 3. Offline learning with multi-objective optimization.

the agent derives the proper action, i.e., sending rate, when
receiving an ACK. Moreover, the multi-objective function of
the agent uses the compounded information of measurement
and goal which is used to train and improve the neural network
model. The ultimate aim of the learning algorithm is to max-
imize the expected cumulative discounted reward. Leveraging
the power of DNNs, the agent can learn near-optimal control
policies that mapping state, measurement, and goal to the
action for each optimization objective.

Formulating congestion control problem as a DRL task in
DeepCC requires specifying the state and action.

State space: When the sender receives an ACK, the agent
observes the current RTT and computes the history statistics.
We narrow our attention to some statistics and observations as
the state st = (s(1)

t , s
(2)
t , s

(3)
t , s

(4)
t ) that may facilitate the CC

decisions. The detailed descriptions of s
(i)
t are in Table II.

Action space: We choose the sending rate, a continuous
variable, as the action of the agent. After receives st, the
agent takes the action at, i.e., the sending rate. The action is
selected by a policy μ(st) which is defined as a deterministic
action at ∈ [0, bound], where bound is the upper limitation
of the sending rate. We use NNs to represent the policy with
a manageable number of adjustable parameters θμ.

Neural Network Architecture: The DDPG algorithm is a
state-of-the-art deep reinforcement learning algorithm, which
involves four deep NNs and exploits the actor-critic algorithm
to train the policies on continuous action space. The actor
network is responsible for executing actions, and the critic
network judges the correctness of the actor network decision.
In order to increase the stability of training, the DDPG
algorithm creates two neural network copies of the actor net-
work and the critic network. Leveraging the basic algorithm,
we design a multi-objective DDPG algorithm. In contrast
to basic DDPG architecture, as shown in Fig. 4, not only
the measurement and goal as inputs are added to the agent,
but the goal vector is added to each layer of NNs. These
explicitly added inputs increase the sensitivity of decision
policy to different optimization objectives and make training
more stable. If DeepCC is based on other deep reinforcement
learning algorithms (e.g. TRPO [25], A3C [26]) that can be
used for continuous decision-making, the number of neural
networks can be reduced accordingly.

Training With Multi-Objective Optimization: We now
describe the policy gradient training algorithm of DeepCC.
The algorithm uses two evaluation networks (termed evalNet)
to approximate the actor function μ(s, m, g|θμ)2 and the critic

2In the following, we use μ(s|θµ) as a shorthand when no ambiguity exists.

Fig. 4. Multi-objective DDPG optimization.

function Qμ(s, g, a|θQ), respectively. The two target networks
(termed targetNet), μ(s|θμ′

) and Qμ(s, g, a|θQ′
) are the copies

of the evalNets accordingly. During training, only the two
evalNets are trained in each time step, while the parameters
of targetNets are updated by slowly tracking the evalNets:
θ′ ← τθ + (1 − τ)θ′ with τ � 1. The critic function can
be described in a recursive expression:

Qμ(st, gt, at|θμ) = E[rt + γQμ(st+1, gt+1, μ(st+1))] (4)

where γ is the discount factor and rt is the instant reward
which is expressed as the combination of mt and gt. Recall
from the definition of action space, the actor function μ(s|θμ)
specifies the current policy by deterministically mapping
inputs to a specific action. It can be updated by applying
the chain rule to the expected cumulative reward Jmul with a
refection to the actor parameters θμ:

∇θµJmul

≈ 1
N

∑

t

∇aQ(st, gt, a|θQ)|a=μ(st)∇θµμ(st, gt|θμ) (5)

where N is the training batch size, i.e. the number of training
samples utilized in one training iteration.

The objective of the training is to maximize Jmul and
minimize the loss L of critic network, which is defined as:

L =
1
N

∑

t

(yt −Q(st, gt, at|θQ))2 (6)

where yt is estimated by:

yt = rt + γQ′(st+1, gt+1, μ
′(st+1|θμ′

)|θQ′
) (7)

DeepCC training proceeds in “episodes”. Each episode con-
sists of multiple network state and measurement updates, and
each update triggers one action taken. To achieve the multi-
objective training, we randomly set the goal vector gt for each
training episode. Therefore, the DeepCC could successfully
generalize across a wide range of trade-offs between different
performance metrics. When L tends to zero and the average
Jmul of a batch size data no longer increases, the agent is
considered to converge.

As a summary, the actor and critic function are trained by
the policy gradient and value-based method respectively. After
training, the actor function parameterized by θμ will converge
to different near-optimal policies corresponding to different
objectives with the help of the critic function. Once being
trained, the agent learns near Pareto front with different goals
under different network conditions (See §VI-A).

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:27:44 UTC from IEEE Xplore.  Restrictions apply. 



2280 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 5, OCTOBER 2022

C. Online DeepCC Tuning

How to adaptively choose the proper policy form learned
Pareto optimal policies remains a challenge. To address this
issue, we design a policy controller, i.e., an online tuning
module to achieve the requirement about throughput, delay,
and loss rate, i.e., the target. Our key insight is that we can
regard the action regulation as a black box where the input
includes state, measurement, and goal driven by the ACK sig-
nal. Then the goal performs as a knob that controls the agent
to pursue different targets. Specifically, DeepCC continuously
detects the changes in the difference between current measured
performance and application requirements, and automatically
tunes the goal with multi-dimensional gradient descent.

During a TCP session, we adopt the multi-dimensional gra-
dient descent algorithm to tune the agent online. According to
the changes in network conditions and the prior measurements,
the multi-dimensional gradients about the distance between
measurement and target value are computed and applied to
generate a new goal for the agent. Thereby the current
measurement can be fed to enable a negative-feedback loop to
influence the action choice until the performance converges to
the application requirements under unseen network conditions.

Multi-Dimensional Gradient Descent Algorithm: The online
tuning algorithm is based on multi-dimensional gradient
descent. Specifically, the objective of the online tuning algo-
rithm is to minimize the loss function J = Euclid(mt, T )
with respect to the goal gt. Here, (1) mt represents the
performance under the corresponding goal gt at time step t.
In this way, we suppose that the measurement can be regarded
as a function of gt, i.e., mt := f(gt); (2) the n-dimensional
target value T = (T (1), T (2), · · · , T (n)) is specified by the
application;(3) Euclid(mt, T ) represents the euclidean dis-
tance between the measurements and the target value. Here
we use euclidean distance for ease of use and simplicity, since
other distance metrics (e.g. L1/L∞ norm) require extra efforts
to get the gradient. In practice, we find our euclidean distance
works well(§VI-B) and leave the exploration of other loss
functions as future work.

To reduce the variance of the estimated value mt, we set a
k-step average of J as the loss function in practice. Taking the
relationship between mt and gt into account, the actual loss
function is described as:

J(gt) =
1
2k

t∑

i=t−k

(Euclid(f(gt), T )) (8)

In this paper, the target value T = (T (1), T (2), T (3)) is
defined as the desired max-min bound for each dimensional
performance metric. The detailed descriptions of T (i) are
shown in Table II. In practice, if m(i) is satisfied the bound of
T (i), we set f(g(i)

t ) = T (i). Namely, we only update gradients
when the target requirements are not satisfied. If the applica-
tion cannot provide the concrete performance target but have
a performance preference, e.g., the high throughput or low
delay, the target T could be presented as an (n-1)-dimensional
vector with the default mode, i.e., low-delay mode or high-
throughput mode. In this case, the target T is not related to
the uninterested metric. Under the low-delay mode, the target

T is set as the minimum RTT and zero packet loss. While in
the high-throughput mode, the target T can be defined as the
observed maximum bandwidth and zero packet loss.

We use a gradient descent method to update the gt. The
gradient of J with respect to gt can be derived as:

�gtJ(gt) = �f(gt)J(f(gt))�gt f(gt) (9)

Since it is non-trivial to model the relationship between the
goal gt and the measurement mt, we cannot easily obtain the
analytic expression of the function f . Here we use a numerical
method to approximate �gtf(gt):

�gtf(gt) ≈ 1
k

t−1∑

i=t−k

Δmi

Δgi
=

1
k

t−1∑

i=t−k

mi+1 −mi

gi+1 − gi
(10)

Finally, the goal can be updated by the following formula.

gt+1 ← gt − α ∗ �gtJ(gt) (11)

where α is the learning rate.
Since the specific function form of f(gt) is unknown and the

function is not necessarily a convex function, the traditional
gradient descent method may fall into local optimum, resulting
in performance degradation. For example, there could be
scenarios where a point makes euclidean distance small but
“far” away from the target. This case happens when the
gradient of goal is mainly contributed from one dimension
and thus this point is treated as far from the target in the
view of this dimension. To solve this problem, we design a
simple rule-based approach to help “jump out” of the local
optimum. In practical terms, if the distance between the ith-
dimensional measurement and target is larger than a threshold,
the ith-dimensional goal is increased by a pre-setting value.

Moreover, non-congestion packet loss is a common phe-
nomenon in the Internet [17]. The goal of loss rate (i.e., g(3))
should not change due to random packet loss. For DeepCC,
we set the constraint for the gradient of the loss rate. That
is to say, if the target is not satisfied with the measurement
of throughput or delay, the gradient of loss rate will be set to
equal that of delay. The above method ensures that the gradient
of loss is not affected by non-congestion packet loss since it
always follows the gradient of delay.

Since the sum of each dimension of goal vector is 1 in the
training process, each dimension of updated goal g(i) will be
normalized before fed into the agent as follow:

g(i) =
g(i)

∑n
i=1 g(i)

(12)

In fact, it could cause a large variance of goal and huge
fluctuations in the convergence process when updating gt

directly following e.q. (11). Additionally, it is difficult to
choose the proper learning rate α. An adaptive learning rate
algorithm Adam [27] is a first-order optimization algorithm
that is less sensitive to the choice of learning rate than the
basic gradient descent algorithm. It also has advantages in
non-convex optimization problems. Therefore, we combine
Adam algorithm to update the gradient �gtf(gt) in practice.

In the online phase, although we do not explicitly take
into account the network conditions, we use the measurement
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value to indirectly reflect the current network conditions to
generalize to a new scenario.

V. IMPLEMENTATION AND TRAINING

In this section, we describe the DeepCC implementation,
training and the interface.

DeepCC Implementation: We implement the sender and
receiver in the user space by adopting the UDP-based trans-
mission skeleton, like Indigo [18]. The sending and receiving
events are implemented by the message-triggered mechanism.
DeepCC replaces the sender-side congestion control with the
offline-learned agent and the online tuning module. The sender
program receives the targets from the applications, executes
the action, and controls the packets sending behavior. Unlike
the sender, DeepCC remains the receiver unchanged.

For practical implementation, the sender firstly loads the
multi-objective agent and sets the default goal according to
the target, i.e., a goal vector (0.8, 0.1, 0.1) that tend to be
high throughput or a goal vector (0.1, 0.8, 0.1) that tend to
be low latency. Every time step the sender received an ACK
message, it updates the estimated measurement and state. Then
it infers the next-step sending rate via the agent with the goal,
measurement, and state. Once getting the sending rate, the
sender can calculate the new cwnd size and pace these packets
in an ack-clock. In the process of sending, if the current
throughput and delay do not reach the target, the sender tunes
the goal according to the online tuning algorithm.

The overhead of DeepCC mainly lies in obtaining the action
and updating the goal, since the neural networks and the online
tuning algorithm introduce extra complexity at the endpoint.
To balance the overhead and efficiency, DeepCC triggers the
model inference and goal tuning every interval instead of at
the packet level. Specifically, the model inference and goal
tuning are triggered when an ACK is received and the time
since the last decision exceeds the decision interval, e.g., 1/2
RTT and 4 RTT respectively. Furthermore, DeepCC takes an
asynchronous interaction between the model inference, goal
tuning, and packet sending so that they do not need to wait
for other executions.

Training: We implement and train the multi-objective agent
in Python with Tensorflow [28] for ease of development.
To learn the control policies in the actor network, DeepCC
first separately extracts the feature from the three inputs,
i.e., state, measurement, and goal. The three inputs employ
different neural network structures. States with 16 past values
are passed to a 1D convolution neural network with 32 filters,
each of size 3 with stride 1. We set the batch size as 64.
Each training episode lasts for 60s transmission between the
sender and the receiver. The measurement and goal networks
use three fully connected layers. Then mergeNet takes all the
processed features from the above three networks and outputs
the sending rate with the “tanh” activation function. The critic
network takes the state, goal, and action as inputs and uses
the same architecture as the actor network to conduct feature
extraction. The extracted features of action are also processed
by three fully connected layers, which is then fed to the last
layer of the critic network. The difference between the actor

and critic networks is that the final output of critic network is
a linear neuron without activation function.

The agent is trained under the network environment where
the fluctuation of bandwidth follows Poisson distribution, like
the Wi-Fi link (See §VI-A). DeepCC agent is trained on a PC
with an Intel Core (TM) i7-6850k 3.6 GHz with 8 GB memory.
It requires approximately two million training iterations to
obtain the near Pareto optimal policies that perform well
enough. In total, the training process took about 15 hours.At
runtime, it takes about 0.5∼0.9 ms on average to get the action
(i.e., the model inference time) or update the goal. We care-
fully set the decision interval as 1/2 minimum RTT and the
online tuning interval as four RTT. Once the multi-objective
agent is well trained offline, this agent will not be retrained
in practical deployment.

Interface: In order to satisfy diverse requirements, DeepCC
provides the interface for applications to set their specified
performance targets or preferences. This allows CC to directly
perceive application requirements. The interface takes two
forms. On one hand, applications can specify the target value
of their required throughput, delay, and packet loss rate.
The performance requirements provide optimization objectives
for the online tuning algorithm. On the other hand, if the
applications cannot provide the value of requirements, they
can choose their performance preferences through the interface
with the second form. In this case, the application can choose
the high-throughput mode or low-latency mode (§IV-C).

VI. EVALUATION

In this section, we demonstrate the advantages of DeepCC’s
multi-objective design in both emulator and real-world sce-
narios over various state-of-the-art schemes. In particular,
we evaluate the performance of the multi-objective offline
learning algorithm (§VI-A) and the performance of offline
& online algorithms (§VI-B) in different network scenario
for different application requirements. Except for the training
environment (i.e. Wi-Fi link), we also evaluate DeepCC with
unseen network conditions, including the cellular link, the
satellite link and the real-world links, to show its gener-
alization ability. In addition, we illustrate DeepCC’s deci-
sion interval and overhead (§VI-C), friendliness and fairness
(§VI-D), and robustness (§VI-E).

A. Offline Behavior Over Multi-Objective Optimization

To validate the effectiveness of multi-objective optimization,
we repeatedly run DeepCC’s agent under three network scenar-
ios with different goals in a broad range using Mahimahi [16].
Among them, we select 5 representative results, which are
in the mode of high throughput, low delay, or the trade-offs.
We also compared DeepCC with the off-the-shelf schemes.
As shown in Fig. 5(a) and Fig. 5(b), we intuitively visualize
the performance of different schemes in a 2D throughput-delay
space. The corresponding loss rate is shown via the color filled.

Emulated Wi-Fi Link: First, we test DeepCC over an emu-
lated Wi-Fi link (from Pantheon [18]) with high bandwidth
variations, which DeepCC has been trained on. The link has an
average 2.64 Mbps bandwidth following Poisson distribution,
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Fig. 5. Performance frontier achieved by offline learned DeepCC agent. The color bar represents the packet loss rate where darker is worse.

176 ms minimum RTT and a drop-tail queue with 130 packets
of buffer. As shown in Fig. 5(a), DeepCC with 5 represen-
tative goals achieves an efficient frontier that covers a wide
range of trade-offs between throughput, queueing delay, and
loss rate.

Specifically, DeepCC with g1 in high-throughput mode
achieves comparable throughput with the state-of-the-art CCs,
while reduces the queueing delay by up to 75% with almost
zero packet loss. When running in the low-latency mode,
DeepCC with g5 performs almost the same as Remy. Other
trade-off points stand in the middle and attain different trade-
offs. These results show the efficiency of our multi-objective
optimization. So DeepCC can achieve a large range of acces-
sible trade-offs only by tuning the goal without any retraining
or redesigning efforts and it achieves almost zero packet loss
without sacrificing other performance metrics due to the high
penalty of loss rate in the reward function.

Emulated Cellular Link: To evaluate the performance of
DeepCC in an unseen network link, we replay the AT&T
driving trace provided by [8]. The cellular link has 200 ms
minimum RTT and 140 packets of buffer. As shown in
Fig. 5(b), We compare DeepCC’s offline agent with current
methods, i.e., Remy, Indigo, PCC, Vivace and BBR. The
performance of DeepCC with different goals also achieves
an efficient frontier. This results indicates that through
training DeepCC has learned an adaptive policy support-
ing multi-objective optimization even under an unseen sce-
nario. However, to achieve a similar relative position of
Fig. 5(a), DeepCC may require different goals. This phenom-
enon exposes the challenge on how to set the proper goal
according to the network condition, which will be described
in the following with our online tuning algorithm.

Emulated Satellite Link: We also evaluate DeepCC’agent
on an emulated satellite link with the same setup in PCC [13]
and Copa [2] papers. The satellite link has 42 Mbps capacity,
800 ms RTT, 1 BDP (bandwidth-delay product) buffer and
0.74% stochastic loss rate. Fig. 5(c) shows that DeepCC with
g1 in max-throughput mode obtains higher throughput than
that of other schemes. DeepCC with g5 in delay-sensitive
mode achieves lowest queueing delay. BBR which performs
well in the above two scenarios, cannot achieve persistent
performance in this scenario. Furthermore, DeepCC with g2

outperforms PCC and Vivace with much higher throughput
and lower queueing delay.

Under the same network environment, e.g., the cellular link,
indeed there could exist the same sending rate with different
goals. But this case can only temporally occur considering the
same agent need to output the same sending rate with different
input combinations of state, measurement, and goal. Therefore,
it will rarely happen that the agent with different goals
behaves as the same congestion control policy in a long run.
Then, according to our experiment results, in steady network
conditions, given different goals (e.g., (0.8, 0.1, 0.1) and (0.6,
0.3, 0.1)), DeepCC agent converges to the different sending
rate that reflects its throughput preference. In dynamic network
conditions as shown in Fig. 5(b) and Fig. 5(c), the DeepCC
agent directed by different goals can adopt different congestion
control policies, and finally achieve different performances.

As shown in the above experiments, DeepCC can reach
a wide range of performance by flexibly adjusting the goal.
DeepCC can improve the throughput from a low-throughput
point to a high-throughput one up to 9X. Likewise, it can
reduce the queueing delay from a high-latency point to a
low-latency one up to 10X.

B. Online Performance Over Specified Requirements

Emulated Cellular Link: As shown in Fig. 6(a), DeepCC
gains an efficient performance frontier again in the online
stage. Compared with the frontier achieved by offline learning
shown in Fig. 5(b), DeepCC with online tuning achieves a
wider frontier than purely through offline learning. That is
because DeepCC takes advantage of both offline and online
learning. When running online, it can timely regulate the
near-optimal policy based on the offline trained agent accord-
ing to the real-time network conditions. To provide a zoom-in
view of online tuning, we carefully select four targets, among
whom three are achievable (i.e., inside the frontier) and one
is unachievable (i.e., outside the frontier). The shadow area
of each achievable target represent the satisfactory region of
the corresponding application. Note that the region under the
frontier of three achievable targets are non-overlap so that
they cannot be satisfied with DeepCC with a single goal.
DeepCC achieves them with proper goal-tuning through its
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Fig. 6. Online performance frontier achieved by DeepCC. The latter two experiments are conducted over real-world network links.

online learning algorithm. For the unreachable target, DeepCC
tries to achieve the performance close to the frontier.

Evaluation in the Wild: We evaluate DeepCC over wide-area
Internet paths spanning two continents. The senders are located
in an Amazon [29] cloud server in USA and a server located in
Japan. The receiver is located inside our campus and connected
to the senders through the wide-area network. We evalu-
ate DeepCC with three targets and compare them against
PCC, Vivace, Cubic and BBR.3 The results are shown in
Fig. 6(b) and Fig. 6(c). The average throughput and 95th per-
centile delay achieved by DeepCC are significantly different
with three requirements. Guided by the target value, DeepCC
cannot only satisfy the corresponding requirement but achieve
better performance in both throughput and delay. The delay of
DeepCC with low-latency targets achieve significantly lower
than that of BBR, PCC and Vivace. Notice that BBR, PCC
and high-throughput DeepCC are not sensitive to packets loss,
so that they both do well on throughput but high-throughput
DeepCC achieves lower delay than that of BBR.

Target Completion Ratio: To investigate the generalization
ability of DeepCC in online stage, we randomly sample
500 target values T of application requirements over above-
mentioned Wi-Fi link and cellular link. The range of these
target values T is selected as follows: T (1) ranges from 0 to
the achievable maximum throughput of all learning-based
schemes on the corresponding link; T (2) varies from 0 to
the achieved maximum queueing delay of all schemes on the
corresponding link; and T (3), representing the loss rate, ranges
from 0 to 10%. Obviously, some of them cannot be achieved
by any one of the existing schemes. The non-DeepCC methods
and DeepCC use the same target set for evaluation.

Here, we denote the target completion ratio (TCR) as
the ratio of target achieved to all targets as our quantitative
evaluation metric. Intuitively, for a given congestion control
scheme, the higher completion ratio is obtained, the more
application requirements can be achieved. Since all the existing
learning-based schemes lack tunable objectives, we test each
scheme with its default objective under the given network
link and calculate its completion ratio. For DeepCC, we test
it with different targets and leave the agent unchanged.

3Cubic and BBR are implemented in Linux kernel 4.15.0.

The results are shown in Fig. 7(a) and Fig. 7(b). As expected,
DeepCC achieves the highest target completion ratio among all
the schemes. Even in an untrained network scenario, DeepCC
still achieves 67.4% completion ratio. Although Vivace reaches
60% of targets in the Wi-Fi network, it cannot meet most
of the targets in the cellular network due to its large delay
and high packet loss rate. This means Vivace cannot achieve
consistent high performance, at least with respect to the target
completion ratio, when facing different network conditions.
The results indicate that DeepCC can tune the objective
function to adapt to both network conditions and application
requirements through adjusting the goal.

C. Decision Interval and Overhead

Here, we investigate the impact of different decision inter-
vals on the performance. Intuitively, the decision interval
determines the frequency of model inference. To evaluate the
impact on average throughput, we set different intervals across
different RTTs environments. Fig. 8 depicts the results over
different decision intervals. There are two takeaways here.
First, fixed decision intervals are not advisable. The larger or
smaller value of the decision interval cannot achieve better
performance. Second, the decision interval should change
dynamically in different RTT environments. According to the
results, we empirically set 1/2 minimum RTT as DeepCC’s
decision interval.

Online tuning interval determines the execution frequency
of the gradient descent. If the interval is too large, DeepCC
cannot adjust the policy in time according to the network
condition to satisfy application requirements. On the other
hand, if the interval is too small, DeepCC will adjust its
policy too frequently thus incurring unstability. To evaluate
the impact of tuning intervals, we set experiments running
the online tuning module with different intervals from half
to 8 RTTs. The results in Fig. 9 show that the average
normalized throughput under 4 RTT is the best than that of
other intervals. Therefore, we use 4 RTT as online tuning
interval in this paper.

Overhead: To investigate the overhead of DeepCC and
compare it with the off-the-shelf congestion controls, we set
up an emulated network with 12 Mbps bottleneck link and
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Fig. 7. The target completion rate under 500 random targets of different congestion controls.

Fig. 8. The average normalized throughput across different decision intervals.

Fig. 9. The average normalized throughput across different tuning intervals.

60 ms RTT for 60 seconds and send traffic from the sender
to the receiver. We measure the average CPU utilization of
these schemes on the sender. On account of Cubic and BBR
implemented in the kernel, we evaluate the CPU utilization of
iperf for sending their traffic. Results are shown in Fig. 10.
It is worth nothing that the overhead of different offline-trained
models is not the same due to their different complexity. For
example, the overhead of Remy(100x)4 is 40% higher than
that of Remy(δ = 1).5 As we expected, DeepCC, similar to
Indigo, achieves a lower overhead than that of other schemes
except for BBR and Cubic. If we implement DeepCC in a
more efficient language (such as C or C++ language) instead
of Python, or convert DeepCC agent into a decision tree [30]
in the Linux kernel, it could be possible to achieve even lower
overhead. We leave this as our future work.

4The model with a 100x range of link rates is provided by [20].
5The model which δ represents the relative importance of latency is provided

by [5].

Fig. 10. Overhead of DeepCC compared with other schemes.

D. Coexistence of DeepCC and Non-DeepCC Flows

To evaluate DeepCC with competing flows, we set up our
testbed to experiment with the coexistence of DeepCC or non-
DeepCC flows. We use two hosts as the sender and receiver
respectively. They are connected through a router running
OpenWrt [31]. We use tc [32] in OpenWrt to regulate the
bottleneck link.

Coexistence With Non-DeepCC Flows: To evaluate the
DeepCC’s friendliness, we examine different target flows
of DeepCC competing with Cubic flows on our testbed.
We choose Cubic flow as the reference flow rests on the
fact that Cubic is the default deployment in Linux kernel.
In our experiments, we start simultaneously two flows from
the sender to the receiver using different schemes including
Cubic, BBR, Remy, Indigo, PCC, Vivace, and DeepCC.

As shown in Fig. 11, we report the average throughput
achieved by each scheme and Cubic throughout time. The
results indicate that BBR, Vivace and Copa are aggressive and
get nearly all the bandwidth from the Cubic flow. However,
when completing with Remy, Indigo and PCC, Cubic is
aggressive, while PCC’s share of bottleneck link’s bandwidth
changes from the high to low and does not grow in the
presence of Cubic.

In the first few seconds, Cubic quickly grabs the band-
width. When the queue is full and packet loss occurs due
to congestion, Cubic reduces its cwnds. However, at this
time, BBR is not sensitive to packet loss and still takes two
times of BDP as its cwnds. Therefore, BBR flow can fully
leverage the queue while the Cubic flow cannot share fairly the
bandwidth due to its sensitivity to packets loss. PCC, Vivace
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Fig. 11. Throughput dynamics of different congestion controls competing the bottleneck link with Cubic.

Fig. 12. Throughput of different DeepCCs vs. Cubic.

and Copa set their sending rate based on their predefined utility
function. They require good start point and need time to find
the good sending rates when competing with the Cubic flow.
In other cases, Remy and Indigo are delay-sensitive congestion
control schemes. They focus on the delay and have lower rate
while Cubic can achieve high bandwidth. In above cases, the
friendliness between these schemes and Cubic is not desirable.

In Fig. 11, Cubic flow can share fairly the bandwidth with
Cubic flow. However, DeepCC (the target is set with 5 Mbps,
180 ms, 1%) mainly uses the available bandwidth outside of
the cubic flow, and achieves a proportional fairness with the
cubic flow. When the sending rate of Cubic decreases, the
available bandwidth grows and DeepCC increases the sending
rate accordingly to obtain higher bandwidth. When the sending
rate of Cubic increases, the available bandwidth reduces and
DeepCC also reduces the sending rate. Although the obtained
bandwidth of DeepCC fluctuates, in a long run it achieves
similar average throughput with that of Cubic.

Furthermore, we use DeepCC with different targets to inves-
tigate its completing behaviors. Fig. 12 shows that the strong
preemption of DeepCC in high-throughput mode benefits from
the ability of utilizing the capacity of the bottleneck. It has a
higher throughput than that of Cubic. When the target is in
the low-latency mode, DeepCC has a weaker preemption of
available bandwidth than that of Cubic. When the target is
set in the middle, DeepCC achieves a better friendliness on

average throughput with competing Cubic flows. As expected,
DeepCC with different targets achieves varying proportional
share of the bandwidth.

Coexistence of DeepCC Flows With the Same Target: To
understand the behavior of DeepCC facing other DeepCC
flows, we set up two competing DeepCC flows with the same
target, e.g., high-throughput target. The data transmission of
the two flows initiates sequentially with a 15s interval and
each flow transmits continuously for 80s. Fig. 13 depicts
the fairness property between two DeepCC flows with the
same target. As expected, DeepCC can achieve an acceptable
fairness with other DeepCC flows. If there are two long flows
competing with the bandwidth, DeepCC can achieve a good
fairness characteristic through a period of adjustment.

E. Robustness

In the following, we evaluate the robustness and conver-
gence of DeepCC. The emulated network link is set as a steady
link with 12 Mbps, 60 ms RTT, and 90 KB of buffer.

Robustness to Packet Loss: When facing the lossy net-
work condition, the loss-based and delay-based schemes often
perform poorly, which is often shown as a sharp decline in
throughput. On the contrary, the learning-based schemes can
combat more non-congested packet loss since they do not take
packet loss or delay as the explicit congestion signal.

To evaluate the robustness to packet loss of DeepCC,
we set up a steady link with a stochastic loss rate ranging
from 0% to 6%. The target for DeepCC is set as 11 Mbps
throughput, 100 ms delay, and 5% loss rate. The target loss
rate represents the maximum tolerable link loss rate. As shown
in Fig. 14, Remy is insensitive to packets loss, whereas it only
achieves low throughput. PCC maintains throughput until the
packet loss rate reaches 5%, i.e., the predefined loss tolerance
included in its objective function. The throughput of Vivace
gradually decreases as the stochastic loss rate increases.

DeepCC remains insensitive to random packet loss and
obtains consistent high throughput. This is because the goal
(more precisely g(3)) is not updated by the online tuning
algorithm when the observed loss rate is less than that of target.
Thus DeepCC ignores the random loss and runs to pursue the
other two dimensions of the target (i.e., throughput and delay).
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Fig. 13. Dynamic behavior of competing DeepCC flows with the same target.

Fig. 14. Robustness to stochastic packet loss.

If the observed loss rate is higher than that of target and
the other two dimensions of measurement are satisfied with
the target, DeepCC does not update the gradient according
to the constraint of loss rate gradient in the online tuning
algorithm. Further, we conduct an experiment to illustrate the
performance of DeepCC without the heuristic rule (§IV-C),
noted as DeepCC w/o, facing different random packet loss.
As shown in Fig. 14, the throughput of DeepCC w/o is
generally lower than that of DeepCC. This is because DeepCC
w/o modifies the goal according to the gradient of packet loss.
However, the gradient change caused by non-congested packet
loss may induce the fluctuations of the goal, which leads to
performance degradation.

Convergence Time of Learning-Based Schemes: Here the
convergence time refers to the time for the learning-based
algorithms to reach a stable state. Although online schemes
could react timely to the variable network conditions, the
performance may be greatly impacted by convergence time.
To evaluate DeepCC, we set the target value T as 12 Mbps
throughput, 100 ms maximum delay, and 1% loss rate. Fig. 15
illustrates the convergence process of several congestion con-
trol schemes with 0.5s granularity. As the results showed,
DeepCC has similar stable convergence behavior as the offline
algorithms, i.e., Indigo and Remy (ver. δ = 1.0), but the
throughput of DeepCC is higher than that of them. Compared
with online learning schemes, DeepCC has the same ability
to quickly lift throughput to 12 Mbps as Vivace (ver. latency),
but the throughput of DeepCC oscillates less than that of it.
In contrast, PCC takes the longest time to reach the throughput
ceiling. Benefiting from offline and online learning, DeepCC
gains a good start point from offline training and quickly
adapts to network conditions through online fine-tuning.

VII. DISCUSSION

DeepCC is a flexible congestion control generated by
multi-objective learning and dynamically tuning policy,
i.e., optimization objective for different network conditions
and application requirements. Although the performance of
DeepCC achieved is encouraging, some issues remain to be
solved.

Fig. 15. Convergence time of different learning-based schemes.

(1) Multi-objective representation. In this paper, DeepCC
adopts the form of weighted objective functions about three
metrics, i.e., throughput, delay, and packet loss, as its offline
optimization objective. If applications also concern other
performance metrics, such as jitter, the objective function
of DeepCC can be easily extended to support it. Further,
we leave the cases that the optimization objective involves
more complex forms or constraints for our future work.

(2) Overhead of large-scale deployment. DeepCC can be
deployed on the server-side and maintain the client unchanged.
The control decision of DeepCC is obtained from the neural
networks at the server. When multiple concurrent connections
are established at the server, the memory and CPU consump-
tion will increase, and thus influence the model inference
time. The server can mitigate this impact by 1) running the
model inference as a service (e.g., tensorflow serving [33])
with multiple instances, 2) performing the load balancing,
and 3) limiting the maximum number of concurrent connec-
tions. (3) Coexistence of DeepCC flows with different targets.
A potential concern for DeepCC is how high-throughput flows
affect the low-latency flows. We experiment with our testbed
using a bottleneck link of 10 KB of buffer [34]. The results
show that the performance of these flows achieves a similar
throughput and delay respectively. Specifically, the queueing
delay is close to zero. Due to the shallow-buffered network,
the controllable space of DeepCC is narrow. Under this cir-
cumstance, DeepCC would tune to a similar policy even facing
different targets, which degenerates from the multi-objective
to the single-objective optimization. However, these results
cannot fully reflect the performance of DeepCC in the real
networks since the last mile is typically the speed bottle-
neck in communication networks [35]. Therefore, DeepCC
can benefit from different bottlenecks to satisfy different
targets in §VI-B.

(4) Complexity of DeepCC. In the offline stage, we leverage
a multi-objective reinforcement learning algorithm to train a
model so that it can flexibly optimize different objectives by
simply changing the input goal. With the trained model, the
action can be obtained by a single pass of the model inference.
As the scale of different network conditions increases, the
model training becomes more difficult and will take more
time due to the increased amount of training scenarios, but the
algorithm complexity itself remains unchanged. In the online
stage, except for the model inference, the main computation
complexity comes from the gradient calculation of online
tuning algorithm, which is simple and does not involves
large number of floating-point computation. Therefore, the
complexity of the online algorithm is extremely low and the
calculation time can be ignored.
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VIII. RELATED WORK

Congestion control has been continuously studied since
the advent of computer networks [36], [37]. As conventional
schemes, such as Cubic [6] and Vegas [38], were designed
for general purposes with a “best effort” mentality, they show
disadvantages in satisfying modern applications that pose strict
requirements on networking. Despite some efforts in [11]
are made to realize explicit control for buffer delay, it only
works well in the cellular network and cannot extend to other
network scenarios or metrics e.g., throughput or loss rate.
In addition, some work [39], [40] focus on the design and
implementation of the training platform for learning-based
congestion control in a real network system to improve the
generalization ability of the learned policies. However, they
only deal with the network issues while ignoring the diverse
application requirements.

Encouraged by the successful experience of machine learn-
ing in other fields [14], [41], [42], network researchers turn to
learning-based approaches. Rather than leveraging the control
rules designed by humans, they propose to use objective-based
approaches to guide the decision-making process in a network
environment. Many solutions are raised in this way. PCC [13]
and Vivace [17] depend on online learning to make right
decisions. Owing to online learning, PCC and Vivace are able
to provide no-regret guarantees whereas they do not customize
and adapt to the requirements. Orca [43] designs two levels
of control which combines Cubic and a agent. The agent
learns the factor of cwnds for Cubic based on DRL algorithm.
Though Orca can achieve high performance in some scenarios,
it cannot guarantee the application-specified demands.

Remy [5] and Indigo [18] perform optimization by learning
congestion control rules offline. Once being trained, nei-
ther Remy nor Indigo can be adjusted to satisfy different
application requirements without retraining. Remy uses an
objective function of two-dimensional metrics, i.e., “through-
delay”, with fixed weight parameters while DeepCC consider
three-dimensional metrics (i.e., throughput, delay, and loss)
with tunable weight parameters. In addition, Remy generates a
rule table to guide the action for congestion control. No further
learning happens after the offline optimization in Remy [44].
Therefore, it cannot generalize to diverse network scenarios
and optimize diverse objective functions. Even if multiple
rule tables are generated using Remy’s training algorithm
according to different optimization functions with different
weight parameters, it is still unclear which rule table should
be used for decision-making when online running. On the
contrary, DeepCC can leverage its online tuning algorithm for
adaptive policy selection in the online stage.

IX. CONCLUSION

To bridge the gap between application requirements and
congestion control, we propose DeepCC, a congestion control
that combines the ideas from both offline learning and online
tuning. DeepCC leverages a novel multi-objective DRL to
learn the multi-objective control policy offline and automati-
cally achieves desired outcomes with the gradient-based online
tuning method. The experiment results show that our approach

not only achieves a wide range of performance trade-offs but
also works well for untrained network scenarios.
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