
Edge-assisted Adaptive Configuration for
Serverless-based Video Analytics

Ziyi Wang∗, Songyu Zhang∗, Jing Cheng∗, Zhixiong Wu∗, Zhen Cao†, Yong Cui∗
∗Department of Computer Science and Technology, Tsinghua University, China

†Computer Network and Protocol Lab, Huawei Technologies, China

Abstract—The growth of video volumes and increased DNN
capabilities have led to a growing desire for video analytics, which
demands intensive computation resources. Traditional resource
provisioning strategies, such as configuring a cluster per peak
utilization, lead to low resource efficiency. Serverless computing
is a promising way to avoid wasteful resource provisioning since
video analytics regularly encounters bursty input workloads and
fine-grained video content dynamics. For serverless-based video
analytics, the application configuration (frame rate, detection
model, and computation resources) will impact several metrics,
such as computation cost and analytics accuracy. In this paper, we
investigate the joint configuration adjustment problem for video
knobs and computation resources provided by the serverless
platform. We propose an algorithm that can efficiently adapt
configurations for video streams to address two key challenges
in serverless-based video analytics systems, including the complex
relationships between the configurations and the key performance
metrics, and the dynamically best configuration. Our algorithm
is developed based on Markov approximation to minimize the
computation cost within an accuracy constraint. We have de-
veloped a prototype over AWS Lambda and conducted extensive
experiments with real-world video streams. The results show that
our algorithm can greatly reduce the computation cost under the
constraint of target accuracy.

Index Terms—Video analytics, Edge computing, Serverless
computing, Deep neural network

I. INTRODUCTION

The deployment of cameras has skyrocketed in recent years.

For instance, it is predicted that the global market for surveil-

lance cameras would reach US$ 45.93 billion by 2027 [1],

[2]. To fully unleash the potential of these installed cameras,

video analytics applications have been developed to assist var-

ious public and private institutions (such as law enforcement

agencies and retail businesses) to increase efficiency, decrease

expenses, and improve security [3], [4], [5]. High-performance

video analytics systems are required due to the ever-increasing

deployment scale of cameras and customers’ growing demand

for video analytics applications.

Deep neural networks (DNNs) have transformed the accu-

racy of video analytics with increased resource requirements

[6], [7]. The existing solutions either rely on the resource-

rich cloud to build virtual machine clusters or invest money

on powerful hardware to build private clusters in order to

handle the resource challenge of high-accuracy video analytics

at scale [4], [8]. Consequently, the execution of expensive

This work was supported by NSFC Project under Grant 62132009 and
Grant 62221003. (Corresponding author: Yong Cui.)

DNNs can result in very high computation costs. For instance,

computing analytics results for a year of video footage (60

FPS) using a 3FPS DNN would cost approximately US$ 54K

on a 2-core Google Cloud Platform (GCP) instance with an

NVIDIA T4 [9]. Despite the fact that cameras can continu-

ously provide video streams, providing a dedicated cluster to

analyze them is unnecessary because the ideal configuration

and resource needs for a video analytics pipeline change with

time. As a result, typical resource provisioning techniques like

configuration based on peak usage or one-time offline profiling

result in low resource efficiency.

Given that video analytics frequently experiences bursty

input workloads and fine-grained video content dynamics,

serverless computing is a promising solution to prevent need-

less resource provisioning [10], [11], [12]. Serverless comput-

ing has evolved as a general-purpose computing abstraction

to reduce time-consuming administration tasks and offer fine-

grained autoscaling computing infrastructures. Function as a

Service (FaaS) solutions, which reflect the idea of serverless

computing, have achieved commercial success in recent years

(e.g., AWS Lambda [13] and Google Cloud Functions [14]).

In FaaS platforms, monolithic application codes are separated

into a number of functions. A microservice is implemented by

each function, which can be individually configured and in-

voked. The lightweight virtualization approach allows function

instances to scale up or down instantly in milliseconds depend-

ing on their input workloads, enabling quick and flexible re-

sponses. This feature makes it possible for serverless functions

to achieve fine-grained scalability and flexibility by allowing

them to handle fine-grained input workload variations without

the necessity for mandatory resource scaling. Additionally, the

pay-as-you-go pricing model of FaaS ensures that no money

is squandered on underutilized resources, leading to excellent

cost-efficiency.

In serverless-based video analytics, frames are extracted

from the video at different sampling rates, compressed into

various resolutions, and then analyzed by different DNN

models on the serverless computing platform. Users also

need to determine the computation resources allocated to the

corresponding serverless function. We refer to a particular

combination of frame rate, DNN model, and computation

resource as a configuration. Evidently, different configurations

result in various degrees of accuracy and computation cost.

Our measurement study demonstrates that finding the optimal

configuration is critical to achieving high-accuracy and cost-

248

2023 IEEE 43rd International Conference on Distributed Computing Systems (ICDCS)

2575-8411/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDCS57875.2023.00058

20
23

 IE
EE

 4
3r

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
ist

rib
ut

ed
 C

om
pu

tin
g

Sy
st

em
s (

IC
DC

S)
 |

 9
79

-8
-3

50
3-

39
86

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DC
S5

78
75

.2
02

3.
00

05
8

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:58:26 UTC from IEEE Xplore. Restrictions apply.

effective video analytics. By dynamically selecting appropriate

configurations based on changes in video content, significant

benefits can be obtained.

The decisions made regarding the configurations of the

video knobs and computation resources have an impact on

each other and are crucial to the overall effectiveness of video

analytics. While there is a broad range of existing efforts from

both industry and academia on optimizing configurations for

video knobs [4], [8], [15], [16], [17], the collaborative con-

figuration tuning for video knobs and computation resources

offered by the serverless platform remains an unexplored area.

In this paper, we propose a framework where the edge server

selects key frames and sends them to the serverless platform

for object detection while using the remaining frames for local

object tracking. Different DNN models are deployed on the

serverless platform to match various resolutions. Compared to

large DNN models, smaller models with fewer convolutional

layers are less accurate but cheaper and faster. The objective

of the problem is to decide the frame rate, DNN model,

and serverless platform’s computation resources for the video

stream to minimize the overall computation cost, subject to a

service accuracy constraint. This problem is challenging for

the following reasons:

(1) The relationships between the configurations and the

key performance metrics are intricate. Key metrics are jointly

affected by various configurations. And one configuration

is responsible for several metrics. For instance, a higher

frame rate increases accuracy but also increases computation

cost. Accuracy is affected by frame rate, memory size, etc.

Moreover, their relationships are non-linear. To figure out

the complicated relationships, we need extensive testing and

appropriate function fitting. Only by doing this, it is possible

to select the optimal set of configurations that minimizes the

computation cost while satisfying the accuracy criteria.

(2) The optimal configuration varies over time. To maintain

high accuracy, we may employ the most expensive config-

uration all the time, but this approach will eat up more

computation resources. Accuracy and computation cost seems

to be a conflict duel. However, the video content information

can get us out of the dilemma. In many cases, some policies

that lower the resolution and frame rate can cut computation

expenses without sacrificing accuracy. For instance, when the

target moves slowly, we can use a lower frame rate. And when

the target object is large in the frame, we can reduce frame

resolution, which would not harm accuracy. Therefore, the

ideal configuration is content-related and changes over time.

However, how to utilize content information to optimize the

computation resources and accuracy is challenging.

These challenges motivate us to propose an adaptive con-

figuration adjustment algorithm for video analytics, which

is capable of optimizing the trade-off between accuracy and

computation costs. Our solution aims to find the most suitable

video knob configuration and computation resource allocation

strategy for an edge-assisted video analytics system.

To the best of our knowledge, this is the first work to jointly

tune configurations for video knobs and computation resources

provided by the serverless platform in the edge environment,

explicitly taking into account the trade-off between the ana-

lytics accuracy and computation costs. The main contributions

of this paper are summarized as follows.

(1) We propose an edge-assisted serverless framework for

video analytics. The fine-grained and automatic resource man-

agement provided by serverless computing helps our frame-

work dramatically improve resource efficiency.

(2) We formalize the joint video knobs and computation

resources configuration problem, for optimizing the trade-off

between accuracy and computation costs. We then develop a

novel algorithm that efficiently adapts configurations for video

streams. It utilizes the Markov approximation to minimize the

computation cost under an accuracy constraint.

(3) We implement a prototype of a joint configuration

optimization framework for the AWS Lambda platform and

evaluate the design through extensive and practical exper-

iments with accuracy and cost profiles obtained from our

experiments. Results confirm the superiority of our approach

compared to several baselines.

The rest of the paper is structured as follows. Section II

explains the background and motivation. The framework is

shown in Section III. Section IV presents the formulation

and model. Section V elaborates the details of our algorithm.

Section VI describes the implementation details. Experimental

results are presented in Section VII. Section VIII discusses the

related work. Finally, we conclude the paper in Section IX.

II. BACKGROUND AND MOTIVATION

The commercial success of cloud computing has been

shown during the past twenty years. Recently, cloud service

providers have proposed serverless computing and used this

paradigm in their FaaS offerings to simplify cloud program-

ming and make cloud resources easier to utilize [13], [14].

Developers just need to register functions with the serverless

platform and specify events that will cause the functions to run

at deployment time. The serverless platform is in charge of

processing requests, scaling resources, and guaranteeing fault

tolerance. Building high-accuracy and cost-efficient video ana-

lytics applications is an ideal fit for the fine-grained and highly

parallel computing modes offered by serverless computing.

In this paper, we focus on the configuration adjustment

problem for serverless-powered video analytics applications

and take the typical object detection task as a case study.

Generally, given an input video, three types of configurations

can be adjusted: memory size, detection model, and video

frame rate. We then discuss how these critical configurations

impact performance and cost. Since the camera and the edge

server are purchased upfront, their costs amortized per frame

will approach zero in the long run [18], but the computation

cost on the serverless platform is paid by time. In addition,

there is no charge for transferring data from the Internet to

the serverless platform [19], [20]. Therefore, we only discuss

the computation cost on the serverless platform in this paper

without considering the transmission cost.

249

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:58:26 UTC from IEEE Xplore. Restrictions apply.

0 2000 4000 6000 8000 10000
0

2

4

6

8

10
La

te
nc

y
(s

)

Memory size (MB)

 Model-x
 Model-l
 Model-m
 Model-s
 Model-n

(a) Latency vs. memory size.

0 2000 4000 6000 8000 10000
0

5

10

15

20
 Model-x
 Model-l
 Model-m
 Model-s
 Model-n
 Fitted curve
 Fitted curve
 Fitted curve
 Fitted curve
 Fitted curve

C
os

t (
G

B-
se

c)

Memory size (MB)

(b) Cost vs. memory size.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Model-x
Model-l
Model-m
Model-s
Model-n
 Fitted curve
 Fitted curve
 Fitted curve
 Fitted curve
 Fitted curve

Ac
cu

ra
cy

Frame rate (FPS)

(c) Accuracy vs. frame rate.

Fig. 1. Impact of configurations on the detection latency, cost and accuracy.

(1) Memory size: In current serverless platforms, memory

size is the only computation resource knob controlled by

users [21], [22]. When memory size is configured, other

resources (such as CPU power) are determined proportionally.

To explore the impact of memory size on latency and cost, we

deploy 5 object detection functions on the serverless platform.

Each function contains a YOLOv5 model [23] with a particular

size. The results are shown in Fig. 1(a) and 1(b). We can find

that the latency decreases as memory size increases because

of the increase of computation resources (memory size and

thus CPU power). However, the cost first decreases and then

increases. Since the serverless platform charges for the total

amount of gigabyte-seconds (memory × latency) consumed by

a function, the relationship between cost and memory can be

complex, depending on the relationship between latency and

memory size. In our case, the latency decreases fast when the

memory size is relatively small, corresponding to the decrease

in cost, and then decreases slowly as the memory size grows,

corresponding to the increase in cost. To sum up, the memory

size has a significant impact on cost. We can find an optimal

memory size that reduces the cost greatly. In our case, by

selecting optimal memory size, we can save up to 62.89%

cost compared to the maximum cost for a certain model.
(2) Detection model: As mentioned above, we deploy 5

different YOLOv5 detection models (x is the largest and l,

m, s stand for large, medium and small while n is the smallest

model) [23]. The accuracy, latency and cost of different models

vary a lot. As shown in Fig. 1, a larger model has better

performance (accuracy) but higher latency and thus higher

cost. For a given target accuracy, we don’t necessarily choose

the largest model. Instead, in order to save cost, we can choose

the smallest model which satisfies the target accuracy. Under

the constraint of accuracy, the impact of model configurations

on cost is very significant. For example, if the target accuracy

is 0.8, we have 3 options of models. By choosing the smallest

model, we can save up to 72.75% cost compared to that of

the largest model.
(3) Video frame rate: The relationship between accuracy and

frame rate is shown in Fig. 1(c). The accuracy of each frame

is computed by comparing the detected or tracked objects with

the objects detected by the largest model. Therefore, a larger

frame rate means a larger proportion of detections and thus

higher accuracy. On the other hand, the cost can vary a lot

as the frame rate changes. For a given target accuracy, we

expect to choose the smallest frame rate which satisfies the

target since the cost is proportional to the number of frames

processed by the serverless platform. For example, when the

target accuracy is given as 0.8 and the model is chosen as

the largest model, by selecting the optimal frame rate, we can

save 16.67% cost compared to that of the highest frame rate.

The difference in cost between good and bad configurations

can be even bigger when taking all three factors into account.

In our case, when the target accuracy is set to 0.8, we can save

costs up to 89.37% compared with the worst configuration.

Therefore, a huge reduction in cost can be obtained by

choosing a proper configuration of memory size, model and

frame rate.

III. EDGE-ASSISTED SERVERLESS FRAMEWORK

In this section, an overview of our framework is given

first. Then we will elaborate on two key components of the

framework, including edge server and serverless platform.

A. Framework Overview

As shown in Fig. 2, the camera connects to the edge server

and continually streams its captured videos to it. Video analyt-

ics tasks are carried out by means of deep neural network mod-

els, which require a relatively large amount of computation

and memory usage. Due to the limited computation power of

edge servers, it is difficult to support such large-scale inference

computation of deep neural network models entirely on edge

servers. However, transmitting all the videos to the cloud

platform for analytics will increase unnecessary computation

and transmission costs, because there are a large number of

redundant frames in the video that do not require repeated

transmission and computation (object detection). Therefore,

this paper proposes a cloud-edge collaborative video analytics

framework. The edge server is responsible for performing

video buffering and lightweight object tracking, while the

cloud platform runs a DNN-based object detection model

only on some key frames to reduce computation cost. In

this paper, the partial frames sent to the serverless cloud

250

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:58:26 UTC from IEEE Xplore. Restrictions apply.

 Camera

 Edge Server

Video Capture and

Encoding

Video Decoding

Video Buffering

Key Frames

Extraction

Serverless Platform

Computation Resource

and Model

Configuration

Key frames

Object Tracking

Adaptive Configuration

Adjustment

Cost & Accuracy

Profile

Profile Updating

Small DNN

Medium DNN

Large DNN

Computing Platform

Storage Platform

Object Detection

Frame Rate

Configuration

Data Flow

Control Flow

Object labels and

bounding boxes

Fig. 2. Edge-assisted serverless framework for video analytics.

platform to perform object detection are called key frames.

The fine-grained and automatic resource management provided

by serverless computing helps our framework dramatically

improve resource efficiency.

B. Edge Server

After the edge server obtains the video stream transmitted

from the camera, the video decoding module decodes the

video stream into continuous video frames. According to the

object detection result message corresponding to the key frame

from the serverless cloud platform, the video buffering module

buffers the key frame and its analytics result. The lightweight

object tracking module will use the detection result of the key

frame as the target to be tracked, and execute the continuous

object tracking algorithm to obtain the analytics result of the

non-key frame. Specifically, we use the Lucas-Kanade object

tracking algorithm [24], which maps the location of the object

from one frame to the next in two steps: (1) extract feature

points representing the moving object, and (2) estimate where

those feature points could be in the second frame to locate

the object. Using object tracking can reduce the number of

video frames sent to the serverless platform to perform object

detection tasks, thereby reducing the amount of computation

and memory usage while ensuring that the accuracy of video

analytics does not drop excessively.

A key module on the edge server is the adaptive config-

uration adjustment algorithm. The relationships between the

solution spaces and the optimization objectives are obtained

from the cost profile and accuracy profile, which are used as

the inputs of the algorithm. Its outputs are the configurations of

video frame rate, detection model, and computation resources.

The frame rate configuration is directly used locally on the

edge server to guide the key frames extraction module. The

configurations of the detection model and computation re-

sources are sent to the serverless platform through the control

flow to guide the object detection module.

C. Serverless Platform

The serverless cloud platform is used to perform deep neural

network inference computation tasks. In addition to receiving

key frames from the edge server, it also receives the com-

putation resources and model configurations generated by the

adaptive configuration adjustment module. Then it performs

object detection inference on key frames according to these

configurations. The model selected in this paper is YOLOv5

[23], the latest work of the single-stage object detection model.

In order to adapt to different needs, YOLOv5 also provides

a variety of models from small to large. Their structures are

similar, but the network depth and width are different, and the

corresponding parameters and computations are also different.

A larger model can achieve better detection results, but at the

same time, the corresponding computation cost and memory

usage will be larger. We deploy these models on the serverless

platform, and the algorithm can select the corresponding model

according to the needs of the scenario. After getting the results

of object detection, including the object labels and bounding

boxes in the key frame, the serverless platform feeds these

results back to the edge server for subsequent object tracking

and profile updating.

In fact, given that our framework has a clear distinc-

tion between control and data flow, it is trivial to use this

framework in many video analytics application scenarios. In

addition to obtaining the identity of the target object and the

corresponding confidence score, the framework can also obtain

other information by replacing different DNN models on the

serverless platform according to the needs of the application,

such as semantic segmentation and object reidentification.

IV. FORMULATION AND MODEL

As illustrated in Fig. 2, there are N parallel DNN mod-

els d1, d2, ..., dN deployed on the serverless platform, with

different input sizes of images. It has been well studied

that the DNN model can be compressed to a smaller size

at the expense of accuracy [25]. Such techniques include

removing some expensive convolutional layers and reducing

input image resolution. Thus in our design, the DNN model

with lower input image resolution has a faster processing speed

and needs fewer resources. Different pre-trained DNN models

have different input image resolutions which have already

been defined in their model architectures. That is, when we

determine the model selection, its input image resolution is

fixed. This is consistent with previous work [15].

We divide time into discrete time slots, each of which has

a duration that matches the timescale at which configurations

can be updated. We introduce a binary variable xi
t to indicate

whether model di is selected in time slot t. Then we use xt to

denote {xi
t|∀di ∈ {d1, d2, ..., dN}}, which is the collection of

model selection variables. Similarly, we use ft to represent

frame rate selection for the video stream in time slot t,
and mt is the memory allocation value. To facilitate our

presentation, the major notations are summarized in Table I.

In the remainder of this section, we first provide analytical

models on the computation cost and accuracy. Then, we

present the problem formulation.

251

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:58:26 UTC from IEEE Xplore. Restrictions apply.

TABLE I
MAJOR NOTATIONS USED IN THIS PAPER.

Notation Description

di The i− th DNN model deployed on the serverless platform

mt Memory configuration in time slot t

ft Frame rate configuration in time slot t

xi
t Whether model di is selected in time slot t (binary variable)

xt Model selection configuration vector in time slot t

F t
C(mt) Computation cost of the memory configuration mt

F t
A(ft) Analytics accuracy of the frame rate configuration ft

A Target analytics accuracy

η Transition probability in Markov approximation

τ Smooth parameter used to control exploration vs. exploitation

Tmax The maximum number of iterations of the algorithm

A. Computation Cost

As mentioned before, cameras and edge servers are gener-

ally purchased and deployed in advance, so their costs tend

to be zero in the long run [18]. However, the computation

cost of the serverless platform is paid according to the usage.

In addition, in our framework, the end-to-end computation

bottleneck (DNN model) is on the serverless platform, and

the computation load on the edge side is relatively small.

Therefore, we mainly consider the computation cost of the

serverless platform in the modeling process.

In current serverless platforms, memory size is the only

computation resource configuration controlled by users [21],

[22]. The allocation of CPU capacity for the function is

done proportionally to the amount of memory allocated. Thus,

increased memory allocation also means increased CPU allo-

cation, which can improve the performance of a processing-

intensive serverless function. Therefore, we only consider

memory size as the resource configuration in this work.

Each serverless function can be “sized” by setting the max-

imum memory size (GB) parameter in the Console or using

the API. This value also affects the CPU shares allocated to

the function when it runs, but in a manner that is not currently

disclosed by the serverless platform. The platform also allows

limiting the maximum function execution time (seconds) for a

function, to prevent runaway or hanging functions from driving

up cost. Since serverless functions run only when a request

must be serviced, they only incur charges when used. The

general pricing model adopted by serverless FaaS providers is

based on two numbers per function invocation [19]:

(1) Maximum memory size (GB): this is not the actual mem-

ory used by the function, but rather the maximum memory size

parameter in the serverless function’s configuration.

(2) Function execution time (seconds): the actual amount of

clock time that the function invocation takes to run. Execution

time is measured in 100 ms blocks and is always rounded up

to the next full block.

For each function invocation, these two values are multiplied

together to produce a number with the unit GB-sec. After

allowing for a monthly allowance of free GB-sec from the free

tier, the billable computation cost is the total GB-sec across

all function invocations, multiplied by a fixed GB-sec rate.

Optimizing costs for a serverless function involves balanc-

ing memory allocation with execution time. A key ingredient

for this optimization is getting insights into memory and ex-

ecution time for the serverless function. Allocating additional

memory to a serverless function may improve performance

in some cases, but in other cases, the performance of the

serverless function may depend on external factors — in which

case, allocating additional memory increases the cost of an

invocation without improving its performance. Knowing what

factors affect the performance of the serverless function is

crucial in the optimization process.

To do so, we implement an object detection serverless

function with different DNN models on the AWS platform

[13] to perform object detection on a clip from a traffic video.

We vary the value of memory allocated to the function and

measure its execution time and computation cost. We also

replace different object detection models for the measurement.

It can be seen from the Fig. 1 that the computation cost

will first decrease and then increase with the increase of

the allocated memory value. The reason is that with the

increase of the allocated memory value and the corresponding

increase in computation power (CPU resources), the execution

time of the function and the computation costs are reduced.

However, as the memory value further increases, the advantage

of decreasing execution time has become smaller. At this time,

the cost of increasing the memory value becomes the main

part, and the computation cost increases.

We can find that the cost-memory functions fitted by differ-

ent DNN models are similar, but the parameters are different.

The relationship between computation cost (F t
C(mt)) and the

memory value (mt) can be fitted as cubic function:

F t
C(mt) =

N∑

i=1

xi
t · (ci1m3

t + ci2m
2
t + ci3mt + ci4), (1)

where ci1, ci2, ci3 and ci4 are constant coefficients.

B. Analytics Accuracy

The accuracy models are derived based on the performance

measurements obtained from our real experiments. We use

YOLOv5 [23], an object detector DNN to perform object

detection on a clip from a traffic video with different frame

rates. For those undetected video frames, we use the Lucas-

Kanade tracking algorithm to track the objects with high

fidelity [24], [26], [27]. Since the video segment consists

of many frames, we compute accuracy by comparing the

detected and tracked objects using different frame rates with

252

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:58:26 UTC from IEEE Xplore. Restrictions apply.

the objects fully detected using the highest frame rate. As

for the metric, we use the F1 score, which is the harmonic

mean of precision and recall. A detected object is identified

as true positive when its bounding box has the same label and

sufficient spatial overlap with the corresponding ground truth.

The spatial overlap can be measured by IoU (Intersection over

Union). In our experiment, an object is correctly detected when

IoU ≥ 0.5 [26].

The relationship between accuracy and the sampling frame

rate is illustrated in Fig. 1. We can observe that a higher

frame rate produces better analytics accuracy. The accuracy-

framerate functions fitted by different DNN models are similar,

but the parameters are different. The relationship between

accuracy (F t
A(ft)) and the frame rate (ft) can be fitted as

exponential functions:

F t
A(ft) =

N∑

i=1

xi
t · (

wi1

1 + (ft/wi2)wi3
+ wi4), (2)

where wi1, wi2, wi3 and wi4 are constant coefficients.

C. Problem Formulation

We only consider the computation cost on the serverless

platform without accounting for the transmission cost as there

is no charge for transferring data from the Internet to the

serverless platform [19], [20]. Analytics on video streams

needs low computation cost and high accuracy. As a result,

when designing the adaptive algorithm, we aim at minimizing

computation cost under the analytics accuracy constraint. The

problem can be formulated as:

min
mt,ft,xt

F t
C(mt).

s.t.
N∑

i=1

xi
t = 1.

xi
t = {0, 1}.

F t
A(ft) ≥ A.

(3)

Constraints 1 and 2 ensure that, in each time slot, one and

only one DNN model can be selected. Constraint 3 says that

the accuracy should be higher than the target value A.

V. ALGORITHM DESIGN

The formulated problem is a mixed integer nonlinear pro-

gramming and it is impossible to find an optimal solution

in polynomial time. Consequently, we propose to leverage

Markov approximation to obtain a solution [28], [29]. Sup-

posed that model selection xt is fixed, there are two problems

left to be solved:

The first problem is optimizing memory allocation to reduce

computation cost:
min
mt

F t
C(mt). (4)

It can be proved that the optimal memory allocation can be

derived as follows:

m∗
t =

N∑

i=1

xi
t ·

√
c2i2 − 3ci1ci3 − ci2

3ci1
. (5)

Algorithm 1 Adaptive Configuration Adjustment Algorithm

Input: A : accuracy threshold,
F t
C(mt) : computation cost function,

F t
A(ft) : accuracy function,

xt : initial model selection vector
Output: mt : memory configuration,

ft : frame rate configuration,
xt : model selection configuration

1: Profile computation cost function F t
C(mt)

2: Profile accuracy function F t
A(ft)

3: repeat
4: Randomly change the model selection vector xt

into x̂t by selecting a new model
5: Obtain m̂∗

t using Eq. (5)
6: Obtain f̂∗

t using Eq. (7)
7: η ← 1

1+e
Ĉ−C

τ

8: With probability η, algorithm accepts
the new model, mt ← m̂∗

t , ft ← f̂∗
t

9: With probability (1− η),
algorithm keeps the model unchanged

10: until there is no significant reduction in the
computation cost for more than Tmax iterations

11: return xt,mt, ft

The second problem is adapting frame rates to satisfy the

target accuracy:

F t
A(ft) = A. (6)

We can get the critical frame rate that just meets the

accuracy requirement:

f∗
t =

N∑

i=1

xi
t · wi2 · (wi1

A− wi4
− 1)

1
wi3 . (7)

Based on the analysis above, we can come to the con-

clusion that once optimal model selection xt is found, the

two left problems are both easy to solve. However, since

model selection variables are binary, the whole problem is

a mix-integer nonlinear problem. It is impossible to find an

optimal solution in polynomial time. In this paper, we propose

to leverage Markov approximation to obtain a solution for

model selection, as shown in Algorithm 1. We divide time

into discrete time slots. At the beginning of each time slot, the

computation cost and accuracy models are updated by the cost

and accuracy profiler according to the current video content

(line 1 to 2).

Given the cost and accuracy functions, we can find the

optimal video knobs and memory configurations for the cur-

rent slot by solving the above problems. Firstly, we randomly

choose a new DNN model d̂, then the new model selection

vector x̂t is obtained, under which the optimal m̂t and f̂t
can be derived by solving the above problems (line 4 to 6).

Afterwards, the new computation cost objective value Ĉ is

calculated, and C is known as the objective function value

for the old solution {mt, ft, xt}. In the current iteration, the

253

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:58:26 UTC from IEEE Xplore. Restrictions apply.

model selected is updated to d̂ with probability η and keeps

unchanged with probability 1− η depending on the objective

value difference Ĉ−C (line 7 to 9). Therefore, changing DNN

model selection is more likely to occur if the new configuration

{m̂t, f̂t, x̂t} results in a lower objective value. The above

iterative processes will continue until Tmax iterations have

been reached.

The parameter τ in line 7 is used to control exploitation

versus exploration. When τ approaches infinity, the algorithm

tries to explore all possible solutions from time to time without

convergence. When τ is small, the algorithm takes more

iterations to identify the globally optimal solution since the

algorithm may be stuck in a locally optimal solution for a

long time before exploring other alternatives. The selection of

τ will be discussed in the evaluation section.

VI. IMPLEMENTATION

We prototype our system with a public cloud provider,

AWS, and utilize AWS’s serverless platform (AWS Lambda

[13]) for our cloud-side implementation. Cloud-side part is

designed to detect objects on incoming frames and return

bounding box results. In particular, we deploy several server-

less functions to carry out that task. And YOLOv5 models

[23] are chosen for the object detection task. For DNN

models having optimal memory configurations separately, we

deploy DNN models in different serverless functions. Since

AWS Lambda does not support runtime memory adjusting

on invocation of serverless functions, we deploy functions in

various memory sizes for every model in advance. Codes and

running dependencies are packed. Additionally, the pre-trained

DNN model weights are also packed into zip files, eliminating

the need to download them from cloud object storage services

like Amazon S3. Locally packed files are uploaded to Amazon

ECS and then used to deploy serverless functions. We share

code bases across serverless functions, and memory can be

configured differently. Finally, to access serverless functions

outside of the AWS platform, we configure API Gateway,

which invokes function whenever a legit HTTP request comes.

Video frames carried in HTTP POST requests are processed

and bounding box results are sent back in the HTTP response.

The edge server is equipped with an octa-core Intel pro-

cessor running 2.2 GHz with 32 GB of RAM. We build

the edge server part with Python language. Once receiving

videos, FFmpeg extracts frames, which are indexed and stored

in the buffer. Our algorithm determines the model, memory,

and frame rate at the beginning of each time slot utilizing

profiles from the previous time slot. These solutions are

cost-optimal while meeting the target accuracy requirement.

Following the result of our algorithm, our system will send

frames at the specified frame rate to the serverless function

that matches the model and memory choice. In addition, the

tracking module is designed to update tracking status using

incoming frames and results from AWS Lambda. Specifically,

for each bounding box result, we create a tracker and save it

in a dictionary. Existing trackers will be sequentially updated

utilizing frames that are not sent to the serverless function.

When new detection results are returned from AWS Lambda,

a new dictionary containing trackers is created and the old

dictionary is replaced. Together, the two parts accomplish our

design goal, which fulfills accuracy while minimizing cost.

VII. EVALUATION

In this section, we evaluate the performance of our al-

gorithm and compare it with several baselines1. To set up

experiments, we profile inter-relationships between decision

domains. First, we profile correlations between cost and mem-

ory size. Five YOLOv5 object detection models are deployed

on AWS Lambda. For each model, the relationship between the

cost and memory during a single detection is profiled. Then,

the optimal memory that minimizes the cost is determined

based on the profiling result. In subsequent experiments, as

long as a model is selected, we will allocate the optimal

memory to the model. The cost per detection varies from

0.6 GB-sec to 9.5 GB-sec. Therefore, picking the optimal

memory is indispensable for minimizing the cost. Second,

we profile the relationship between accuracy and frame rate.

For every model, we run the pipeline with a set of fixed

framerates and record the resulting accuracies. Thereby, we

determine the search space for deciding the models and frame

rate under accuracy constraints. From the edge server, we

send keyframes to AWS Lambda for detection and implement

object tracking based on the returned results. By exploiting

the profiling results, our adaptive configuration adjustment

algorithm minimizes the cost by deciding the model for

detection and the frame rate at which keyframes are sent. To

verify the effectiveness, we compare our algorithm with three

other baselines:

• Non-adaptive1: This baseline uses a fixed configuration.

YOLOv5x is chosen as the detection model, and the

frame rate is set to 5 FPS. This baseline uses the largest

model to guarantee accuracy but a low frame rate to lower

the cost.

• Non-adaptive2: This baseline also uses a fixed config-

uration. The YOLOv5l detection model is chosen, and

the frame rate is set to 10 FPS. To compensate for the

accuracy losses caused by picking a smaller model, a

higher frame rate is adopted.

• Glimpse [26]: Glimpse client sends selected frames to the

Glimpse server for object detection and runs tracking on

unselected frames. The selection is based on measuring

the pixel difference between neighbor frames and tracking

objects using optical flow. For a fair comparison, we

change Glimpse’s implementation from a static server to

AWS Lambda. To unify the performance metrics, the GB-

sec cost is selected for computation power consumption.

In our evaluation, the F1 score is the metric for accuracy,

which computes the harmonic mean of precision and recall for

the detected objects’ locations and class labels. The higher the

F1 score, the better the accuracy performance. The computa-

tion cost is measured by multiplying memory and computation

1https://github.com/STAR-Tsinghua/ServerlessVideoAnalytics

254

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:58:26 UTC from IEEE Xplore. Restrictions apply.

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Accuracy

 Adaptive
 Non-adaptive 1
 Non-adaptive 2
 Glimpse

Target accuracy

(a) Inference accuracy performance
on traffic dataset.

0 500 1000 1500 2000 2500 3000 3500
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Cost (GB-sec)

 Adaptive
 Non-adaptive 1
 Non-adaptive 2
 Glimpse

Better

(b) Computation cost on traffic
dataset.

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Accuracy

 Adaptive
 Non-adaptive 1
 Non-adaptive 2
 Glimpse

Target accuracy

(c) Inference accuracy performance
on drone dataset.

0 300 600 900 1200
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Cost (GB-sec)

 Adaptive
 Non-adaptive 1
 Non-adaptive 2
 Glimpse

Better

(d) Computation cost on drone
dataset.

Fig. 3. Inference accuracy and computation cost of our algorithm (Adaptive) vs. several baselines on traffic and drone datasets.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

Fr
am

e
ra

te
 (F

PS
)

Time slot

 video 1
 video 2

(a) Frame rate over time.

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

C
os

t (
G

B-
se

c)

Time slot

 video 1
 video 2

(b) Computation cost over time.

0 5 10 15 20 25 30 35
0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Time slot

 video 1
 video 2

(c) Inference accuracy over time.

Fig. 4. Runtime behavior of our algorithm over time.

time, which is quantified in GB-sec. For datasets, we use 3

distinctive ones provided by [18]. The traffic dataset contains

7 videos with a total length of 2331s. The dashcam dataset

contains 9 videos with a total length of 5361s. The drone one

contains 13 videos with a total length of 163s.

A. Algorithm Comparison

In this subsection, we compare our algorithm and the base-

lines by accuracies and costs on traffic and drone datasets. The

target accuracy is set to 0.85 for ours and Glimpse. As shown

in Fig. 3(a) and 3(b), Non-adaptive 1 performs badly, which

is inferior to ours in terms of cost and accuracy. Non-adaptive

2 outperforms Non-adaptive 1 in accuracy. However, its cost

outweighs the competitor’s by a large margin. In general,

both Non-adaptive strategies’ accuracy varies in a wide range,

failing to meet target accuracy. For Glimpse, it is more cost-

efficient than non-adaptive algorithms, for achieving higher

accuracy with less cost. Nevertheless, Glimpse may perform

poorly with a non-negligible probability. In comparison, our

algorithm achieves target accuracy while costing the least in

all measured strategies. In detail, the cost of our algorithm is

14.88% lower than Non-adaptive 1, 25.64% than Non-adaptive

2, and 9.78% than Glimpse.

We apply the same comparison scheme to the drone dataset

to verify our algorithm’s generalization ability. The accuracy

goal for Glimpse and our algorithm is set to 0.85. As shown

in Fig. 3(c) and 3(d), Non-adaptive 1’s accuracy is relatively

near to the target accuracy. Non-adaptive 2’s accuracy is

much higher than the target accuracy. However, their costs

grow non-proportionally higher, which is unbearable compared

to the accuracy-cost efficiency achieved by our algorithm.

Glimpse’s mean accuracy is close to ours. Its cost is lower

than Non-adaptive strategies yet falls short of the comparison

of ours by a small margin. However, it suffers from an

unstable performance. In 40% of tested times, it fails to

achieve target accuracy. As a comparison, our strategy assures

target accuracy while maintaining the lowest cost among

comparing strategies during testing. We can save up to 74.03%

cost compared to Non-adaptive 1, 77.34% compared to Non-

adaptive 2, and 26.43% compared to Glimpse.

Combining the performances of Non-adaptive strategies

across two datasets, we argue that Non-adaptive strategies

not only fail to meet target accuracy but also fail to keep

relative cost efficiency compared to our algorithm. However,

the performances of Non-adaptive strategies are incoherent

across datasets. What are the reasons for the inconsistency? By

manually examining the two testing datasets, the difference in

datasets is revealed. In the traffic dataset, the objects’ speed is

much faster and the object quantity is much higher, compared

to the drone one. In the drone dataset, a smaller model is

adequate to achieve target accuracy, and a lower frame rate

is also acceptable. By exploiting the two characters, the cost

can be cut significantly. By pairing a larger model with a

lower frame rate, and a smaller model with a higher frame

rate, the initiative of Non-adaptive strategies makes sense.

However, fixed configurations fail to adapt to different inputs,

resulting in inconsistency across datasets, and failure to meet

the accuracy goal. In comparison, our algorithm is the best

performer under different testing scenarios, well satisfying

the accuracy constraint while significantly reducing cost, by

255

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:58:26 UTC from IEEE Xplore. Restrictions apply.

adaptively adjusting the model, memory, and frame rate based

on video content.

B. Detailed Behaviors of Our Algorithm

In this subsection, we want to examine the run-time metrics

of our algorithm (frame rate, cost, and accuracy) and verify

our design goal of adaptively adjusting configuration based

on video content. Two videos are picked as testers. By

manually checking, the real-time characters of the videos are

determined. If there is coherence between the behavior of our

algorithm and the characters of the videos, we can verify our

design goal. Video 1 is collected from a traffic camera. In

the first half, objects move slowly. In the second half, objects

move much faster. As shown in Fig. 4, in the first half, the

frame rate is low, while the frame rate soars in the second half.

We argue that if video content is mostly static, our algorithm

will turn down the frame rate to save costs. If video content

changes sharply, the algorithm will turn up the frame rate to

meet target accuracy. Video 2 is shot by a dash camera. The

objects change speed irregularly and constantly. As shown in

Fig. 4, the aforementioned pattern persists in the case of video

2. When object speed in video changes, the frame rate changes

accordingly. The pattern underpins our claim that the algorithm

adaptively adjusts configuration based on video content. As a

result, the target accuracy of 0.85 is well met over time slots.

The idea behind the adaptation is that “more frames can be

handed to do object tracking if the difference between frames

is small, so frame rate can be cut and cost saved”.

C. The Impact of Different Parameters

In this subsection, we evaluate the impact of different

parameters on the run-time behavior of our algorithm.

(1) Target accuracy A is a vital constraint in our experiment.

In order to explore the performance of our algorithm under

different accuracy goals, we set 3 different values: 0.75, 0.8,

and 0.85. For each value, our system is tested 100 times. The

resulting cost and accuracy statistics are shown in Fig. 5. As

displayed in Fig. 5(a), the target constraints are well fulfilled.

All trials satisfy the target accuracy. As Fig. 5(b) shows, the

more stringent the goal, the higher the cost. However, the ratio

of cost and target accuracy grows disproportionately. Because

the system will resort to a larger model and higher frame

rate together to meet higher requirements, which increases

expense dramatically. Moreover, we can observe that the actual

accuracy lies between a narrow region above the target goal.

Because our goal is to minimize cost, our system is conserva-

tive about a higher accuracy for the price of disproportionate

cost increase. In short, our system fulfills different accuracy

promises while minimizing the cost.

(2) Smooth parameter τ is another important parameter in

our experiment, which is used to control exploration versus

exploitation in the configuration spaces. In order to explore

the influence of τ on convergence, we choose 3 different

values: 5, 60, and 300. Fig. 6 shows the fluctuation of cost and

frame rate for different τ when the algorithm iterates. Smaller

τ contributes to faster convergence and a smaller fluctuation

0.65 0.70 0.75 0.80 0.85 0.90
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Accuracy

 A=0.75
 A=0.80
 A=0.85

Target accuracy

(a) Inference accuracy under different
accuracy constraint A.

0 500 1000 1500 2000 2500 3000
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Cost (GB-sec)

 A=0.75
 A=0.80
 A=0.85

Better

(b) Computation cost under different
accuracy constraint A.

Fig. 5. The impact of accuracy constraint A.

0 20 40 60 80 100
0

5

10

15

20

25

30

Fr
am

e
ra

te
 (F

PS
)

Time slot

(a) Frame rate under different smooth
parameter τ .

0 20 40 60 80 100

200

400

600

800

1000

C
os

t (
G

B-
se

c)

Time slot

(b) Computation cost under different
smooth parameter τ .

Fig. 6. The impact of smooth parameter τ .

interval. As τ goes up, the interval goes wider and the result is

less stable. When τ equals 5, the algorithm converges within

20 time slots. On the contrary, when τ is set to 300, the curve

vibrates violently and fails to output a good result. Smaller

values of τ have a strong tendency to stick to the optimal cost

since they are greedier about lower costs and less sensitive to

cost changes. Larger τ tends to explore possible solutions and

seek cost changes. However, if τ is too small, the algorithm

will stick to the initial selection and fail to change. On the

other hand, if τ is too large, the algorithm fails to converge.

Therefore, the promising value of τ sits between large and

small. In our experiment, we find the most appropriate value

for τ is 5, which converges fast and produces a good result.

On other datasets, the aforementioned pattern persists and the

optimal τ can be determined individually.

(3) The execution interval of the adaptive adjustment al-

gorithm is a critical parameter in our experiments. We choose

three sets of values (100, 300, and 500 frames) to examine the

performance of our algorithm at various execution intervals.

Fig. 7 displays the algorithm’s accuracy and computation

cost at these intervals. We can find that, on average, the

smaller the algorithm execution interval is, the closer the result

corresponding to the configuration selected by the algorithm is

to our optimization goal, that is, to minimize the computational

cost while satisfying the accuracy constraint. Specifically,

when the algorithm is executed every 100 frames instead

of every 300 or 500, the accuracy achieves the constraint

of 0.85 and the computation cost is the lowest. Frequent

execution of the algorithm inevitably introduces some com-

putation overhead. As the execution interval of the algorithm

256

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:58:26 UTC from IEEE Xplore. Restrictions apply.

100 300 500
0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Algorithm interval (frame)

(a) Accuracy at different algorithm
intervals.

100 300 500
0

50

100

150

200

250

C
os

t (
G

B-
se

c)

Algorithm interval (frame)

(b) Computation cost at different al-
gorithm intervals.

Fig. 7. The impact of algorithm interval.

increases, the determined configuration is difficult to adapt to

the optimization objective of all video frames in the entire

interval, so the computation cost is relatively large.

VIII. RELATED WORK

A. Video Analytics

Recent years have witnessed the proliferation of video

analytics systems. The key idea is to balance resources and

accuracy by adjusting video configuration knobs, such as

frame rate, resolution, and DNN models. For example, Jiang

et al. [4] presented a controller that dynamically picks the

optimal video knobs for existing DNN-based video analytics

pipelines. Ran et al. [30] considered the complex interaction

between model accuracy, video quality, battery constraints,

network data usage, and network conditions to determine

an optimal offloading strategy. Wang et al. [15] studied the

configuration adaption and bandwidth allocation for multiple

video streams, which are connected to the same edge node

sharing an upload link. Zhang et al. [8] profiled the resource

demand and accuracy of different knob combinations for each

video query offline, and adjusted configuration knobs for large-

scale concurrent queries according to their quality and latency

goals online. Zhang et al. [16] tuned video frame rate, frame

resolution, and quality parameters to save bandwidth and

maintain inference accuracy. Xiao et al. [31] characterized

the complex interaction between video analytics pipelines and

video characteristics. They built a performance clarity profile

for each pipeline to define its accuracy/cost tradeoff and its

relationship with video characteristics. Elgamal et al. [32]

presented a 3-tier video analytics system to reduce the latency

and increase the throughput of NN-based analysis over video

streams. They used semantic video encoding in which the

video encoder becomes aware of the object detection task.

Hung et al. [33] proposed a system that identifies the tradeoff

between multiple resources and accuracy, and narrows the

search space by identifying a “Pareto band” of promising

configurations. Jain et al. [34] presented a system that lever-

ages a model of cross-camera correlations to reduce the size

of the search space, thus reducing the cost of cross-camera

analytics. However, these studies only focus on the trade-

off between analytics accuracy and computation resources,

while ignoring the elastic computation requirements of video

analytics and the opportunity to save the overall computation

cost by optimizing computation resource allocation provided

by the cloud platform.

B. Serverless Computing

Several efforts have been made to unlock the potential of

serverless computing in video processing. Fouladi et al. [35]

provided a framework for interactive video processing appli-

cations by invoking thousands of serverless function instances

in seconds. Ao et al. [36] provided a framework to orchestrate

serverless functions in video processing pipelines and exploit

the intra-video parallelism to achieve low latency. Zhang et
al. [1] presented a cloud-edge collaborative serverless video

analytics system and solved a cloud-edge partitioning problem

for multiple concurrent serverless pipelines. Romero et al. [37]

presented a heterogeneous and serverless video analytics and

processing framework that executes general video pipelines.

Jang et al. [38] proposed a serverless microservice architecture

that operates on top of a fleet of smart cameras for multi-

tenant, multi-application real-time video analytics use cases.

Kang et al. [9] built an end-to-end system for interactive

video analytics which manages its own serverless workers

across heterogeneous accelerators, and leverages optimizations

for jointly optimizing pre-processing and inference. Yu et al.
[39] presented a serverless-based model serving system that

automatically partitions a large DNN model across multi-

ple functions for faster inference and reduced per-function

memory footprint. However, these studies are optimized for

the framework that combines serverless computing and video

processing tasks, without considering the important impact of

configuration tuning on application performance.

The most related work is probably [21], in which the authors

presented an automated configuration tuning tool for serverless

video processing pipelines. However, they only considered

serverless-side configuration knobs for each worker: the al-

located resource and the assigned workload. We jointly tune

configurations for video knobs (e.g., video frame rate and

detection model) and computation resources provided by the

serverless platform, explicitly taking into account the trade-off

between the analytics accuracy and computation costs.

IX. CONCLUSION

Video analytics has been a driving application of networking

research. In this paper, we propose an edge-assisted serverless

framework for video analytics. Based on this, we study the

joint configuration tuning problem for video knobs and com-

putation resources provided by the serverless platform. We

propose an efficient algorithm based on Markov approximation

which can select appropriate configurations for video streams,

while accounting for the trade-off between accuracy and cost.

A prototype with AWS Lambda is further implemented for

evaluation. Our extensive experiments with real-world video

streams showed the effectiveness and superiority of our algo-

rithm over state-of-art solutions.

257

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:58:26 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Zhang, F. Wang, Y. Zhu, J. Liu, and Z. Wang, “Towards cloud-
edge collaborative online video analytics with fine-grained serverless
pipelines,” in Proceedings of the 12th ACM Multimedia Systems Con-
ference (MMSys), 2021, pp. 80–93.

[2] M. Zhang, F. Wang, and J. Liu, “Casva: Configuration-adaptive stream-
ing for live video analytics,” in IEEE INFOCOM 2022-IEEE Conference
on Computer Communications. IEEE, 2022, pp. 2168–2177.

[3] G. Ananthanarayanan, P. Bahl, P. Bodı́k, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” IEEE Computer, vol. 50, no. 10, pp. 58–67,
2017.

[4] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM), 2018, pp. 253–266.

[5] Q. Zhang, H. Sun, X. Wu, and H. Zhong, “Edge video analytics for
public safety: A review,” Proceedings of the IEEE, vol. 107, no. 8, pp.
1675–1696, 2019.

[6] Z. Chen, K. Fan, S. Wang, L.-Y. Duan, W. Lin, and A. Kot, “Lossy
intermediate deep learning feature compression and evaluation,” in
Proceedings of the 27th ACM International Conference on Multimedia
(MM), 2019, pp. 2414–2422.

[7] Z. Fang, D. Hong, and R. K. Gupta, “Serving deep neural networks at the
cloud edge for vision applications on mobile platforms,” in Proceedings
of the 10th ACM Multimedia Systems Conference (MMSys), 2019, pp.
36–47.

[8] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
delay-tolerance,” in 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2017, pp. 377–392.

[9] D. Kang, F. Romero, P. Bailis, C. Kozyrakis, and M. Zaharia, “VIVA:
An end-to-end system for interactive video analytics,” in Proceedings
of the 12th Conference on Innovative Data Systems Research (CIDR),
2022.

[10] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications,” in 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2020, pp. 419–434.

[11] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt, “SAND: Towards high-performance serverless computing,”
in 2018 USENIX Annual Technical Conference (ATC), 2018, pp. 923–
935.

[12] Z. Jia and E. Witchel, “Nightcore: efficient and scalable serverless com-
puting for latency-sensitive, interactive microservices,” in Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2021, pp.
152–166.

[13] “AWS Lambda,” https://aws.amazon.com/lambda/, Accessed: 2023-05-
01.

[14] “Google Cloud Functions,” https://cloud.google.com/functions, Ac-
cessed: 2023-05-01.

[15] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-based real-
time video analytics,” in IEEE INFOCOM 2020-IEEE Conference on
Computer Communications. IEEE, 2020, pp. 257–266.

[16] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“AWStream: Adaptive wide-area streaming analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM), 2018, pp. 236–252.

[17] M. Hanyao, Y. Jin, Z. Qian, S. Zhang, and S. Lu, “Edge-assisted
online on-device object detection for real-time video analytics,” in
IEEE INFOCOM 2021-IEEE Conference on Computer Communications.
IEEE, 2021, pp. 1–10.

[18] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, and
J. Jiang, “Server-driven video streaming for deep learning inference,” in
Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication (SIGCOMM), 2020, pp. 557–570.

[19] “AWS Lambda Pricing,” https://aws.amazon.com/lambda/pricing/, Ac-
cessed: 2023-05-01.

[20] I. Stoica and S. Shenker, “From cloud computing to sky computing,”
in Proceedings of the Workshop on Hot Topics in Operating Systems
(HotOS), 2021, pp. 26–32.

[21] M. Zhang, Y. Zhu, J. Liu, F. Wang, and F. Wang, “Charmseeker:
Automated pipeline configuration for serverless video processing,”
IEEE/ACM Transactions on Networking, 2022.

[22] Z. Wen, Y. Wang, and F. Liu, “Stepconf: Slo-aware dynamic resource
configuration for serverless function workflows,” in IEEE INFOCOM
2022-IEEE Conference on Computer Communications. IEEE, 2022,
pp. 1868–1877.

[23] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, and et al.,
“ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and
OpenVINO Export and Inference,” Feb. 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.6222936

[24] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proceedings of the 7th Inter-
national Joint Conference on Artificial Intelligence (IJCAI), 1981, pp.
674–679.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations (ICLR), 2015, pp. 1–14.

[26] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2015, pp. 155–168.

[27] K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, and A. K.
Roy-Chowdhury, “Frugal following: Power thrifty object detection and
tracking for mobile augmented reality,” in Proceedings of the 17th ACM
Conference on Embedded Networked Sensor Systems (SenSys), 2019, pp.
96–109.

[28] M. Chen, S. C. Liew, Z. Shao, and C. Kai, “Markov approximation for
combinatorial network optimization,” IEEE Transactions on Information
Theory, vol. 59, no. 10, pp. 6301–6327, 2013.

[29] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE
Journal on Selected Areas in Communications (JSAC), vol. 36, no. 10,
pp. 2333–2345, 2018.

[30] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A mobile
deep learning framework for edge video analytics,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2018,
pp. 1421–1429.

[31] Z. Xiao, Z. Xia, H. Zheng, B. Y. Zhao, and J. Jiang, “Towards perfor-
mance clarity of edge video analytics,” in 2021 IEEE/ACM Symposium
on Edge Computing (SEC). IEEE, 2021, pp. 148–164.

[32] T. Elgamal, S. Shi, V. Gupta, R. Jana, and K. Nahrstedt, “Sieve:
Semantically encoded video analytics on edge and cloud,” in 2020
IEEE 40th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2020, pp. 1383–1388.

[33] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “VideoEdge: Processing camera streams
using hierarchical clusters,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2018, pp. 115–131.

[34] S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan, J. Jiang, Y. Shu,
P. Bahl, and J. Gonzalez, “Spatula: Efficient cross-camera video analytics
on large camera networks,” in 2020 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2020, pp. 110–124.

[35] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng,
R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein, “Encoding,
fast and slow: Low-latency video processing using thousands of tiny
threads,” in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2017, pp. 363–376.

[36] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket: A
serverless video processing framework,” in Proceedings of the ACM
Symposium on Cloud Computing (SoCC), 2018, pp. 263–274.

[37] F. Romero, M. Zhao, N. J. Yadwadkar, and C. Kozyrakis, “Llama: A
heterogeneous & serverless framework for auto-tuning video analytics
pipelines,” in Proceedings of the ACM Symposium on Cloud Computing
(SoCC), 2021, pp. 1–17.

[38] S. Y. Jang, B. Kostadinov, and D. Lee, “Microservice-based edge device
architecture for video analytics,” in 2021 IEEE/ACM Symposium on
Edge Computing (SEC). IEEE Computer Society, 2021, pp. 165–177.

[39] M. Yu, Z. Jiang, H. C. Ng, W. Wang, R. Chen, and B. Li, “Gillis:
Serving large neural networks in serverless functions with automatic
model partitioning,” in 2021 IEEE 41st International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2021, pp. 138–148.

258

Authorized licensed use limited to: Tsinghua University. Downloaded on April 03,2025 at 00:58:26 UTC from IEEE Xplore. Restrictions apply.

