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Abstract—Driven by plummeting camera prices and advances
of video inference algorithms, video cameras are deployed ubiq-
uitously and organizations usually rely on live video analytics
to retrieve key information, such as the locations and identi-
ties of target objects. However, analyzing real-time video poses
severe challenges to today’s network and computation systems.
To balance accuracy, bandwidth usage, and latency, we present
EVA, an edge-assisted real-time video analytics framework, which
coordinates computationally weak cameras with more powerful
edge servers to enable video analytics under the accuracy and
latency requirements of applications. EVA treats the region where
a target object is located as a fine-grained transmission unit and
exploits the redundancies in both spatial and temporal domains
to reduce the bandwidth usage. Based on the framework, we
design an adaptive offloading algorithm, which coordinates the
recognition process between the camera and the server. To adapt
to complex environments, we then design a threshold adjust-
ment algorithm to tune the confidence threshold dynamically.
Experiments on real-world video feeds show that compared to
several recent baselines on multiple video genres, EVA maintains
high accuracy while reducing bandwidth usage by up to 90%.

Index Terms—Deep neural network (DNN), edge computing,
spatial-temporal redundancy, video analytics.

I. INTRODUCTION

HE PRIMARY goal for the development of the Internet
Tof Things (IoT) is to create ubiquitous connection and
access. Particularly, video cameras are gaining popularity
in today’s society, and there has been consistent growth
in the scale and scope of their deployments. Millions of
high-definition and network-connected cameras are employed
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at traffic intersections, retail stores, and remote industrial
sites, for the purpose of traffic condition analytics and safety
anomaly detection [1], [2], [3], [4], [5], [6], [7]. For example,
counting volumes of cars, pedestrians, or bikes feeds into the
traffic light controller to appropriately control the durations
and manage traffic. These applications require latency below
a second [2]. One key enabler for fast and accurate video infer-
ence is the rapid development of deep neural network (DNN),
especially convolutional neural network (CNN) [8], [9], [10].

In a typical real-time video analytics pipeline, a camera
streams live video to the edge server, which immediately runs
an object recognition model to get analytic results about that
video. In addition to obtaining the identity of the target object
and the corresponding confidence score, the edge server can
also obtain further information, such as the location and trajec-
tory coordinates of the target object. Edge servers are usually
purchased in advance and their network/computing resources
need to be paid according to usage [11], [12], [13]. Therefore,
reducing network and compute costs for edge servers is criti-
cal for organizations deploying video analytics services [14].
In addition, such pipelines aim to deliver the results with high
accuracy, low latency, and low bandwidth usage. However, it
is challenging to satisfy these three metrics at the same time
because of their conflicting relationships. For example, trans-
mitting a video at a higher bitrate from the camera to the edge
server can improve the accuracy, but it can also result in the
increase of transmission latency and network bandwidth usage.

Numerous studies have been presented to improve the effi-

ciency of video analytics pipelines, which can be categorized
into three groups.

1) Some researchers exploited the spatial redundancies and
saved bandwidth usage by encoding each frame with
a spatially uneven quality distribution (e.g., Region-of-
Interest (Rol) encoding) [14], [15], [16], [17], [18].
However, they do not consider that the same target object
might be unnecessarily transmitted multiple times in the
temporal domain.

2) Some researchers exploited the temporal redundancies
and filtered out frames that did not contain relevant
information for the inference results [19], [20], [21],
[22]. However, they do not consider that each frame
contains some content (e.g., background) that does not
affect the result in the spatial domain.

3) Some other researchers adapted configurations (e.g.,
frame rate, frame resolution, and deep learning model)
to optimize a given goal [11], [12], [13], [23], [24],
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[25], [26]. However, they perform coarse-grained frame-
level rather than fine-grained region-level configuration
adjustment to make a tradeoff between accuracy, latency,
and bandwidth.
In a word, these studies have optimized the video analyt-
ics pipelines from their own perspectives, which leads to
suboptimal performance.

In this article, we propose EVA, an edge-assisted real-time
video analytics framework, which coordinates computation-
ally weak cameras with more powerful edge servers. The
edge server can be any device that supplies the requisite
computation capability. Unlike traditional video streaming
that optimizes user-perceived visual quality, this new type
of machine-centric video analytics permits aggressive spatial—
temporal compression of irrelevant pixels to save bandwidth
usage. For the spatial domain, we use the region where the tar-
get object is located instead of the whole frame as the basic
transmission element (i.e., blacking out the areas other than the
objects of interest). For the temporal domain, we only transmit
the target object once when it is in its best position by using
temporal correlation in video analytics.

However, it is challenging to make offloading decisions
based on this framework. First, although the spatial-temporal
redundancy suppression greatly reduces bandwidth consump-
tion, it introduces a new problem to the recognition process:
how to select the best region for each object in the tempo-
ral domain in order to meet the requirements of accuracy and
latency simultaneously. For instance, as an oncoming object is
getting closer to the camera, its captured pixels will increase,
which results in a higher recognition accuracy. In the mean-
time, limited by the constraint of the end-to-end latency, we
have to transfer the region at a lower bitrate, leading to a
decrease in accuracy. Second, both video content and network
conditions are complex and changeable, making it a challenge
to adaptively adjust the offloading decision. On the one hand,
the strategies for identifying objects in well-illuminated and
dimly lit environments should be different. On the other hand,
available bandwidth and network latency are constantly chang-
ing. Therefore, the decision needs to be adaptively adjusted for
different conditions.

To properly consider the tradeoff between accuracy and
latency, we first estimate their values on the camera side.
For accuracy estimation, we fully utilize the preprocess-
ing information (e.g., the locations and confidence scores of
objects) from the camera detector to judge how confident it
is to recognize a target object. We also estimate the total
end-to-end latency according to current network latency, trans-
mission frequency, and waiting latency. Then, according to
the accuracy and latency requirements of applications, local
recognition results are transmitted to the server as soon as
their confidence scores are high enough—in other words,
the objects are easy to be detected by the camera detector.
For those unconfident objects, on the other hand, the cam-
era sends their best regions (i.e., the regions with the highest
confidence score) to the server for recognition when they are
about to exceed the latency constraint. To make our system
more adaptive to complex and ever-changing environments,
the confidence threshold is dynamically tuned. Periodically,
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we examine the correctness of camera-side detected results
using the high-accuracy model on the server side. Then, the
feedback from the server is sent to guide the camera detector
to tune the threshold accordingly.

The main contributions of this article can be summarized

as follows.

1) We develop a fine-grained region-based cooperative
video analytics framework which treats the object-
located region as the basic transmission element and
transmits each target object only once. The framework
utilizes the redundancy of both spatial and temporal
domains to achieve significant bandwidth saving.

2) We design two key algorithms in the framework. Under
the latency and accuracy requirements of applications,
the proposed offloading algorithm coordinates the recog-
nition process between camera and server. Meanwhile,
the adjustment algorithm dynamically revises the confi-
dence threshold to adapt the system to complicated envi-
ronmental factors, such as illumination and obstruction.

3) We implement and evaluate a system consisting of the
camera side and the server side. Experimental results
with real-world video data sets show that compared to
several recent baselines, EVA reduces significant band-
width usage by up to 90%, while consistently meeting
the desired accuracy requirement. Its end-to-end latency
can also meet the needs of real-time video analytics.

The remainder of this article is structured as follows.

Section II presents the cooperative framework. Section III
elaborates the details of two algorithms. Section IV describes
the implementation details. Experimental results are presented
in Section V. Section VI discusses the related work. Finally,
we conclude this article in Section VII.

II. EDGE-ASSISTED VIDEO ANALYTICS FRAMEWORK

In this section, an overview of our framework, namely, EVA,
is given first. Then, we will elaborate three key components
of the framework, including object recognition (tiny and big
model), offloading controller, and threshold adjuster. Finally,
we discuss the application of the framework.

A. Framework Overview

As shown in Fig. 1, the framework consists of two parts:
the camera side and the server side. After the camera obtains
real-time video data, a tiny CNN model is run locally for
rudimentary object recognition. Then, the preliminary recog-
nition results are delivered in two paths. The offloading path
indicated by solid lines represents our routine recognition
workflow, while the adjustment path indicated by lines of dots
is executed periodically to make the system more robust and
efficient to the impact of the variational external environment.
In the offloading path, each object is sent only once. The
offloading controller is responsible for deciding to transmit
either results of confident objects right away, or regions of
unconfident objects at their best recognition location. For the
latter, the server runs a more powerful model for further recog-
nition. In the adjustment path, our system periodically feeds
the filtered objects back to the threshold adjuster on the server
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side. After careful examination and revision, the server then
sends the new tuned threshold back to camera-side offloading
controller.

The framework makes full use of the computing capac-
ity of both the camera and the server. They cooperate to
obtain object recognition results under the constraints of accu-
racy and latency. In addition, this framework reduces network
bandwidth usage. From the perspective of the spatial domain,
the framework only transmits the region of the target object,
and does not consider the other parts (e.g., background) that
have no effect on the recognition accuracy, which greatly
reduces the redundant information in the spatial domain.
Moreover, those easy-to-identify objects are directly sent in the
form of recognition labels, which decreases both end-to-end
latency and bandwidth usage. From the perspective of tempo-
ral domain, target objects are transmitted only when they are
in their best locations, instead of being repeatedly sent in each
frame, which greatly reduces the redundant information in the
temporal domain without sacrificing the recognition accuracy.
Finally, preliminary results generated by the camera detector
are tested at regular intervals, which makes our system more
intelligent and adaptive to the ever-changing scenarios.

B. Object Recognition

We use a tiny and a big CNN model for object recognition
on the camera side and server side, respectively. Because the
inference of state-of-the-art CNN is computationally expen-
sive (and slow), it is uneconomical to run a heavyweight
high-accuracy model on the camera for video analytics. The
compression technique has been developed to reduce the cost
of inference. For example, Tiny YOLO [27], a shallower vari-
ant of the YOLO object detector, is 5x cheaper than YOLOV2.
The tradeoff is that compressed CNN is usually less accurate

Edge-assisted real-time video analytics framework with spatial-temporal redundancy suppression.

than the original CNN. Therefore, we design such a collabora-
tive recognition mechanism based on the different computing
capabilities of the camera and the server. A lightweight model
is run on the camera side for preliminary recognition. If the
local detector is quite confident about current detection results,
it will directly send the results to the server. Otherwise, the
target objects will be transferred for further recognition using
a powerful model on the server side.

C. Offloading Controller

The controller decides whether to directly transmit the
preliminary recognition results or continue to track objects
waiting for the best opportunity to send them for further recog-
nition based on application requirements, such as accuracy
and latency. Comprehensive offloading algorithm design is the
focus of the next section. The following are the descriptions
of the key procedures in the controller.

Object Tracking and Best Location Record: We utilize the
preprocessed information of the camera-side CNN model,
including detected bounding boxes and confidence scores, to
record the best location of an object. For each target object,
if the Intersection over Union (IoU) [21] of the two consec-
utive recognized bounding boxes exceeds a given threshold,
it will be considered as a successful tracking. In other words,
the target is still in the scene. Then, we will update the record
result to the region that has a higher confidence score. If the
latency limit set by the application is about to be exceeded,
the best region of the target object will be sent immediately.
Otherwise, we will continue to wait for a new update.

Adaptive Region Encoding: We improve bandwidth effi-
ciency by sending only a few regions in adaptive quality to
achieve the same recognition accuracy as if the whole video
is sent in the highest quality. For the target object which the
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controller decides to send for further recognition, we dynami-
cally decide the sending bitrate of its best region according to
the current network conditions and the latency requirement of
the application. These regions are encoded as images. In fact,
we are going a step further based on Rol encoding [17], [28],
which allows the user to adjust the encoding quality for each
macroblock in a frame and does not remove the background.
For computer vision tasks, our method uses the region where
the target object is located instead of the whole frame as the
basic transmission element (i.e., blacking out the areas other
than the objects of interest).

D. Threshold Adjuster

The threshold adjuster selects the appropriate confidence
threshold for the offloading controller to filter those easy-to-
identify objects. This is important, because if the threshold is
set too high, it may sacrifice the benefits of local detection (i.e.,
decrease in bandwidth usage and latency) by unnecessarily
sending objects that could have been correctly recognized on
the camera side. Meanwhile, a too low threshold will be harm-
ful to recognition accuracy because an actually unconfident
object might be mistaken for a confident one. However, such
selection can be difficult, for optimal threshold varies rapidly
as the scenarios change from time to time, which is hard to
be clearly expressed due to the complex relations between
background factors and recognition accuracy.

To overcome the difficulty, the threshold adjuster is designed
to periodically check the correctness of camera-side recogni-
tion results of the filtered objects, whose confidence scores
are close to the confidence threshold, by using a heavyweight
recognition model on the server side. The confidence threshold
is tuned accordingly and transferred to guide the offloading
controller to distinguish confident targets from unconfident
objects more precisely.

E. Application Discussion

In fact, this framework can be applied to many application
scenarios. In addition to obtaining the identity of the target
object and the corresponding confidence score, the frame-
work can also obtain further information by replacing different
models according to the needs of the application, such as
the location and trajectory coordinates of the target object.
Furthermore, today’s cameras usually retain video for a period
of time to their local storage. For some situations that require
further detailed analysis, the server can then request the cam-
era to transmit the complete video within a specific period of
time.

In industry practice, DNN models are heavily tuned and
customized to make them more specialized for the tasks and
resource-efficient for the devices. In fact, model optimization
and framework optimization are two different dimensions. As
the model becomes more efficient, the computational latency
will be reduced. Combined with our framework, it yields even
greater performance benefits. In addition, state-of-the-art cam-
eras have more resources than the commodity cameras which
are widely deployed [19]. However, we do not anticipate a
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fast update that switches out commodity cameras for state-
of-the-art ones because large-scale camera deployments are
financially costly to install and maintain. Instead, we expect a
more gradual shift and, thus, believe that camera-edge frame-
work will be valuable for a long time to come. Even if
all cameras are equipped with powerful Al chips and have
powerful computing power in the future, the idea of spatial—
temporal redundancy suppression can still help select crucial
information for processing, thereby saving computing load.
This allows the camera to avoid redundant computations so
that other tasks can be performed as well.

Furthermore, our framework can be generalized to other
computer vision tasks such as semantic segmentation. The dif-
ference is that object detection is based on bounding boxes,
while semantic segmentation is based on pixels. Semantic seg-
mentation DNNs assign each pixel a class label and a score for
each class (the class with the highest score is the class label).
In the beginning, we may give each pixel a score of 14+max’-
max, where max is the highest score among the classes of
interest and max’ is the second highest. Evidently, the higher
the score is, the more indecisive the DNN is about which class
a pixel belongs to. We could pick the unconfident regions by
creating some rectangles that cover as many high-score pixels
as possible. Then, we can send these unconfident regions to the
server side for further processing. In this way, our framework
can be generalized to other computer vision tasks.

III. ALGORITHM DESIGN

In this section, we first give the problem formulation.
Then, we introduce the offloading control algorithm (denoted
as Algorithm 1), containing a detailed description of our
treatments for three different types of detected objects (dis-
tinguished by their occurrence continuity). The confidence
threshold adjustment algorithm (denoted as Algorithm 2) is
described as a supplement, which is designed to make our
system more efficient and robust in the face of complicated
and unstable environmental factors, such as illumination and
obstruction.

A. Problem Formulation

Although the spatial-temporal redundancy suppression
greatly reduces bandwidth consumption, it introduces a new
problem to the recognition process: how to select the best
region for each object in the temporal domain in order to meet
the requirements of accuracy and latency simultaneously. As
each target object appears, moves and finally leaves the camera
range, it will be captured repeatedly in a series of consecu-
tive frames by the camera. We number the frames in which
the target object appears from 1 to W, and use Rol; (Rol) to
represent the bounding box where the target object is located
in the ith frame.

When selecting the best region for the target object, we
aim at achieving desirable analytics accuracy under the latency
constraint. For simplicity of illustration, we use a; and /; to
denote the accuracy and latency of Rol;. The natural objective
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Algorithm 1 Offloading Control Algorithm
Input: D, : the n — th detected results,
r : video bitrate, R : maximum video bitrate,
f : transmission frequency, L : network latency,
B : network bandwidth, T : latency threshold,
C : confidence threshold
Qutput: S : send decision
1: forn € 11t N do
2: for object € D, do
if (object.send == false and
object.confidence > C) then
add object.result to S
object.send < true

4
5
6: Count D,_1 N D,
7
8
9

(5]

for object € D,—1 ND, do
if (object.send == false) then
: if (}% + L + object.time > T) then
10: r < f-B-(T — L — object.time)

11: add (object.region, r) to S

12: else if (Aobject.confidence < 0) then
13: add (object.region, R) to S

14: update object in Dy,

15: for object € D,—1 — D, do

16: if (object.send == false) then

17: r < min(R, f - B- (T — L — object.time))
18: add (object.region, r) to S

19: return S

is the maximum of the accuracy, which can be formulated as

; 1

max a; (1)

s.t. a; = Rol;.confidence 2)
Rol;.size .

l; = ——— + L + Rol;.time 3)

Li<T. 4)

Equation (2) illustrates that the confidence value fed back by
the recognition model can be used to estimate the accuracy of
the Rol. We use B and L to denote current network bandwidth
and latency. Equation (3) shows the composition of end-to-end
latency, including sending latency (Rol;.size/B), transmission
latency (L) and waiting latency (Rol;.time). Equation (4) says
that the end-to-end latency cannot exceed the target value 7.
The goal is to find the Rol that maximizes the accuracy among
all Rols under the latency constraint.

B. Offloading Control Algorithm

The offloading control algorithm is designed to coordi-
nate the recognition process between the camera and the
server under the latency and accuracy requirements of appli-
cations. The key idea is to make full use of the preliminary
recognition on the camera side. We use the confidence score
of local recognitions to measure the goodness between two
sequential regions. On the one hand, detection results are trans-
mitted immediately to the server when the local detector is
confident enough about it. On the other hand, Algorithm 1
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sends the best region of unconfident objects to the server
for further recognition. To properly consider the tradeoff
between latency and accuracy, we calculate the total end-
to-end latency of each recognition process, and send the
bounding box of an object at the possible maximum bitrate
as soon as the latency approaches the threshold set by appli-
cations. We will discuss the algorithm in detail in the following
parts.

First, for those easy-to-identify objects, they are highly
likely to be correctly recognized by the local camera detector.
We set a confidence threshold (denoted as C) for Algorithm 1
to decide whether it is positive enough about its detection
results. The process corresponds to lines 2-5: for each yet-
to-be-sent object (i.e., object.send == false) in the current
detected results, if its confidence score is above C, Algorithm 1
will send the object’s result (denoted as object.result) to the
server right away.

Then Algorithm 1 seeks the highest confidence score in
sequence for those objects which continually appear. Thus,
each sent decision will be made based on the results of current
and last local detection. We use N to denote the total number
of local detection. For the nth (1 < n < N) local detection, D,
denotes the set of its results, then D,_; denotes the set of its
last detected results, and D,,_1 N D,, indicates the set of objects
that continually appear. The intersection can be calculated by
using the IoU metric [21], similar to IoU = (AN B/AUB),
where A and B are the bounding boxes of the last detection
and the current detection, respectively. After that, Algorithm 1
estimates the end-to-end latency of each unconfident object in
D,_1 N D, to weigh the risk of a timeout, which includes the
transmission latency and the waiting latency. We use L, B, f,
and R to denote network latency, network bandwidth, trans-
mission frequency, and maximum video bitrate, respectively.
Then, we can calculate the maximum transmission latency as
(R/f - B)+ L. Waiting latency could be easily expressed as the
current time minus the first time when the object appeared (i.e.,
object.time). If the total latency of an object is greater than
the latency threshold (denoted as T), Algorithm 1 will trans-
mit the best region at the bitrate of f - B- (T — L — object.time),
which is precisely the maximum allowed bitrate under the
latency requirement (lines 8-11). Otherwise, the object will
be checked to see if its confidence score declines over time.
If so, Algorithm 1 will immediately send the object’s region
to the server at maximum bitrate R (line 12 to 13). This is to
identify objects moving farther away from the camera, which
would compromise both accuracy and latency if we wait to
see whether there will be a better region to be recognized.
Then, at line 14, object.time and object.send are updated in
the loop.

Finally, Algorithm 1 transmits all the regions of disap-
pearing and yet-to-be-sent objects in D,_1, which can be
expressed as D,_1 — D,. The transmission bitrate is deter-
mined by the following two evaluations. If the total latency of
an object approaches T, its sending bitrate is supposed to be
f-B- (T — L— object.time) as we discussed above. Otherwise,
Algorithm 1 should send the region at R to maximize accu-
racy. As can be seen in line 17, both evaluation can be unified
as one expression min(R, f - B - (T — L — object.time)).
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Algorithm 2 Confidence Threshold Adjustment Algorithm
Input: Ceyprens :

current confidence threshold,

Dabove objects whose confidence is above Ceyrrent,
Dpeiow objects whose confidence is below Ceyrrent,
AC adjustment interval of confidence threshold,

num : number of successful detections,
A : accuracy target
Output: C,,,, : new confidence threshold
: num < 0

1

2: for object € Dgpove do

3 result < model.recognize(object.region)
4 if (object.result == result) then

5: num + +

6: if (‘D'Z:Ze‘ < A) then

7 return C,ens + A - AC

8: num < 0

9: for object € Dpejyy do

10 result <— model.recognize(object.region)
11: if (object.result == result) then

12: num + +

13: if (‘ D"b“l’"l > A) then

14: return C.,penr — AC

15: return C.yprent

We use N to denote the number of local detection, and M
to denote the average number of target objects contained in
each detection, then the time complexity of Algorithm 1 is
ON x M).

C. Threshold Adjustment Algorithm

The threshold adjustment algorithm adaptively adjusts the
confidence threshold to guarantee the performance of our
system in the face of complex and volatile circumstances. The
main idea is to periodically check the correctness of locally
detected results whose confidence score is around the current
confidence threshold (denoted as Cecyrrent). Algorithm 2 uses
the recognition results from the server as the ground truth and,
therefore, requires that the camera detector sends both regions
and detected results of certain objects.

To ensure the correctness of confident results detected by
the camera-side detector, we first examine the detected objects
whose confidence scores are slightly above Ceyrrene (denoted
as Dgpove). For each region, Algorithm 2 runs a CNN model
on the server to get the ground truth. Then, a detection will
be considered successful if the object’s result is consistent
with the ground truth. We use num to denote the number
of successful detection and |Dgpove| denotes the total number
of confident detection, then the accuracy of Dapove should be
(num/|Dgypove|). The accuracy is supposed to be at least equal
to the accuracy target (denoted as A) required by applications.
If not, the new confidence threshold (denoted as Cpey) Will be
revised upward. The adjustment interval (denoted as AC) and
its coefficient A can be heuristically obtained.

On the other hand, if the confidence threshold is set too high,
considerable objects which could have been recognized locally
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will be sent to the server, causing the waste of both band-
width usage and computing resources. To avoid this, we then
check the detected objects whose confidence scores are slightly
below Ceurrent (denoted as Dypelow). Similar to the examination
of Dypove, We can calculate the accuracy of Dpejow. If such
accuracy exceeds A, Cpew Will be lowered. It is noteworthy
that the adjustment interval of threshold decrease is nar-
rower than that of increase, because achieving the requirement
of applications is way more important than saving network
bandwidth.

We use K to denote the number of target objects with
confidence scores near the current threshold, then the time
complexity of Algorithm 2 is O(K).

IV. IMPLEMENTATION

We implement an end-to-end system mostly in Python and
it consists of around 2000 lines of code. The system includes
a camera side and a server side.

Camera Side: We implement camera-side functions on vir-
tual machine (VM) for emulation and then migrate the system
to an Nvidia Jetson intelligent toy car [29] for realistic evalua-
tion. As can be seen in the camera part of our design flow (i.e.,
Fig. 1), three key modules need to be implemented: 1) object
recognition module; 2) tracking module; and 3) data trans-
mission module. For the object recognition module, in order
to reduce inference latency, we use Nvidia TensorRT [30] to
optimize the deep learning model. For the object tracking mod-
ule, to ensure that each object is only sent once, we first create
a cache to store objects that appear in the current frame, and
then implement a trace () function to select the objects that
appear in both the current frame and the cache according to
the IoU of two objects’ bounding boxes. For the data trans-
mission module, multimedia streaming protocols (e.g., RTP)
aim to be fast instead of reliable. While they can achieve low
latency, their accuracy can be poor under congestion. Recent
work has moved toward HTTP-based protocols and focused on
designing adaptation strategy to improve the performance, as
in research (Pensieve [31], CS2P [32]) and industry (HLS [33],
DASH [34]). What we transmit is the key information obtained
after preprocessing on the camera, such as the preliminary
recognition result or the best region of the target object, so we
use the reliable protocol HTTP protocol and create a request
session to send a POST request to the server side. When the
regions of low-confidence objects are ready to be transmit-
ted, we tune the IMWRITE_PNG_COMPRESSION parameter
in imwrite () function of OpenCV to adaptively encode our
image data.

Server Side: The implementation of the server side con-
sists of three main functions: 1) object detection; 2) data
transmission; and 3) confidence threshold adjustment. The
detection function is similar to the camera side, and the
transmission function is implemented through the Flask web
framework [35]. Both functions can be executed in parallel by
our system for the majority of the time. However, when the
server needs to check the correctness of the camera detector
due to a change in brightness or other factors, we must per-
form object detection, confidence threshold adjustment, and
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data transmission sequentially. In this way, we ensure that the
camera side can be regulated in a timely manner in accordance
with the new confidence threshold. In our current implemen-
tation, periodic threshold adjustments are made whenever 500
target objects with confidence scores near the current thresh-
old are collected. This value can be adjusted according to the
actual usage scenario.

V. EVALUATION

In this section, we evaluate the performance of our
system in comparison with several recent baselines. The
server is equipped with an octa-core Intel processor running
3.3 GHz with 16 GB of RAM and an NVIDIA GeForce
GTX3060 graphics card with 6 GB of RAM. According to
the previous study [19], we use a VM with limited computing
power to simulate the camera side. The resource configuration
of the simulated VM is 4 GB of RAM and a 1-GHz CPU. We
implement the algorithm on the camera side and the server
side, respectively. For the CNN model, Tiny YOLO [27] and
FasterRCNN-ResNet101 [36] are run on the camera side and
server side, respectively. We use two data sets provided in [14].
The traffic data set contains seven videos with a total dura-
tion of 2331s. The drone data 3set contains 13 videos with
a total duration of 163 s. The videos are fed into the cam-
era sequentially and in real-time. We make the source code
publicly accessible.!

A. End-to-End Improvements

We start with EVA’s overall performance gains over the
baselines. The performance metrics we evaluate mainly
include the following.

1) Accuracy: We measure the accuracy using the F'1 score
which is the harmonic mean of precision and recall
for the detected objects’ locations and class labels.
The ground truth is obtained by running server-side
CNN model on the original (highest quality) video. In
this way, we can reveal any negative impact of video
compression and streaming on CNN inference.

2) Bandwidth Usage: We measure the bandwidth usage by
the size of the sent data divided by its duration. Different
video content will have different bandwidth usage. To
avoid impact of video content on bandwidth usage, we
report bandwidth usages of our algorithm and the base-
lines after normalizing them against the bandwidth usage
of each original video. In general, the total cost of a
video analytics system includes the camera cost, the
network cost paid to stream the video, and the cost of
the server. Since the camera and the server are purchased
upfront, their costs will approach zero in the long run,
but the network cost is paid by time. Thus, we focus on
reducing the network cost through reducing bandwidth
usage.

3) End-to-End Latency: We measure the end-to-end latency
by counting the time between when an object first
appears in the video and when its region is correctly

Uhttps://github.com/STAR-Tsinghua/EVA
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recognized, which includes the processing latency of
the camera and the server as well as the transmission
latency.

The baseline comparison systems include the following.

1) DDS [14]: Tt reduces bandwidth usage by eliminating
spatial domain redundancy. It filters out the parts of the
given frame that do not affect the recognition result (e.g.,
background), but does not consider that the same tar-
get object is transmitted multiple times in the temporal
domain.

2) Reducto [19]: It reduces bandwidth usage by eliminating
temporal domain redundancy. It filters out certain frames
that do not affect the recognition result, but does not
consider that each frame contains some content that does
not affect the result in the spatial domain.

3) Camera-Only: It only executes the tiny CNN model
locally on the camera side for recognition.

4) Server-Only: It compresses the videos and offloads all
frames to the server side for recognition after the camera
captures the video.

Fig. 2 compares the inference accuracy, bandwidth con-
sumption and end-to-end latency of EVA with those of the
baselines. We normalize the bandwidth usage against the size
of the highest-quality videos which we use to get the ground
truth. Fig. 2(a)—(c) shows the performance of these systems
on the traffic data set. From the figure, we can find that
Server-only has the highest average accuracy of 98.60%. This
is because all videos are transmitted to the server for high-
accuracy recognition. As a result, its bandwidth consumption
is also the highest, with an average normalized bandwidth of
0.97. Due to the relatively large transmission latency caused
by the full video transmission, its average end-to-end latency
is also the highest. DDS and Reducto reduce bandwidth con-
sumption from the perspective of spatial and temporal domain,
respectively. It can be found from the figure that these two
systems achieve relatively high accuracy (98.05% for DDS
and 98.27% for Reducto). However, they only save bandwidth
from a single dimension, which leads to their relatively high
bandwidth consumption and end-to-end latency. The average
normalized bandwidth of DDS is 0.52, while that of Reducto
is 0.80. In addition, Camera-only executes all jobs locally and
does not consume any bandwidth resources, resulting in the
lowest accuracy and end-to-end latency. Compared with them,
our system EVA occupies very little transmission bandwidth
of 0.08 to ensure a high average accuracy of 97.10%. The
reason is that EVA removes redundancy from both spatial and
temporal domains, which can greatly reduce bandwidth usage
without sacrificing much recognition accuracy. Its end-to-end
latency is the second lowest, which can well meet the real-time
requirement.

Fig. 2(d)—(f) shows the performance of these systems on
the drone data set. Server-only also has the highest average
accuracy of 98.00%. In addition, it has the highest bandwidth
consumption and end-to-end latency. DDS achieves spatial
optimization, as its normalized bandwidth consumption is
reduced to 0.45 and its average accuracy is 96.18%. Similarly,
Reducto achieves temporal optimization. Its normalized band-
width consumption is 0.72, which is still relatively high, and
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under various bandwidth consumption budgets. This is because
EVA saves bandwidth from both the spatial and temporal
domains, which makes its required bandwidth much smaller
than that of DDS. Therefore, when we limit the normalized
bandwidth to 0.2, EVA manages to transmit all data it needs,
and its accuracy can reach up to 89.30%. However, the avail-
able bandwidth at this time cannot meet the needs of DDS, and
its accuracy is as low as 17.70%. As we increase the available
bandwidth, the accuracy of EVA fluctuates around 90%, while
the accuracy of DDS rises from around 20% to around 80%. It
can be seen that when the available bandwidth is limited under
a certain threshold, DDS cannot guarantee the accuracy while
EVA still works well by virtue of its advantages of removing

redundancy and saving bandwidth.

Fig. 3. EVA outperforms DDS in accuracy under various bandwidth
consumption budgets.

its average accuracy is 96.94%. Although Camera-only con-
sumes no bandwidth resources and has the lowest end-to-end
latency, its accuracy is the worst, only 87.76%. Our system
EVA can still maintain an accuracy of 94.76% under the con-
dition that the normalized bandwidth consumption is 0.25.
Although it requires co-processing between the camera and
the server, it achieves the second lowest end-to-end latency
because it greatly reduces the transmission latency.

It can be found that the performances of these systems
on the traffic and drone data sets are similar. The results
demonstrate that EVA outperforms several baseline systems.
It maintains high accuracy while reducing bandwidth usage

C. Impact of Confidence Threshold
The confidence threshold is a significant parameter in EVA.

by up to 90%.
In this part, we first explore the impact of statically setting

B. Impact of Network Settings
We alter the available bandwidth between the camera side

and the server side, and compare the accuracy of EVA and different thresholds on accuracy and bandwidth consumption.

DDS. Fig. 3 shows that EVA outperforms DDS in accuracy As shown in Fig. 4, when the confidence threshold is adjusted
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Fig. 5. Confidence threshold, inference accuracy, and saved bandwidth of EVA and two fixed-threshold solutions on traffic and drone data sets. (a) Confidence
threshold on the traffic data set. (b) Inference accuracy on the traffic data set. (c) Saved bandwidth on traffic data set. (d) Confidence threshold on the drone
data set. (e) Inference accuracy on the drone data set. (f) Saved bandwidth on the drone data set.

from 0.4 to 0.8, the average accuracy of EVA rises from
86.30% to 96.60%. At the same time, the average normalized
bandwidth consumed also increases from 0.29 to 1. In essence,
this is a tradeoff relationship. When the confidence threshold is
low, the camera side will consider most of the local recognition
results as confident results, and send them directly to the server
without further recognition. In other words, more objects are
identified preliminarily by the camera detector other than a
more powerful detector on the server side, which leads to
lower accuracy of the entire system. Meanwhile, it reduces
bandwidth usage since fewer regions of unconfident objects are
transmitted. On the other hand, when the confidence threshold
is tuned higher, the camera is more cautious and more regions
of objects, whose confidence is lower than the threshold, will
be transmitted to the server for further recognition. Although
this improves the accuracy of the system, the corresponding
bandwidth consumption also increases.

Since the confidence threshold is a significant parameter in
EVA, we propose Algorithm 2 to adaptively select the proper
value under the accuracy requirement of the application. To
better understand the robustness of our algorithm, we now
evaluate the performance of the algorithm for dynamic adjust-
ment on two different data sets (i.e., traffic data set and drone
data set) in comparison with two fixed solutions whose thresh-
old is the upper and lower bound of ours, respectively. We
measure the accuracy and saved bandwidth which is normal-
ized as in previous experiments. The target accuracy set by the
application is 90%. To simulate the change of environment in
a day, we tune the brightness of tested videos at each time
point, whose brightness is 100%, 40%, 20%, 60% and 80%
of the original one in sequence.

As shown in Fig. 5(a), two fixed-threshold solutions are
indicated by the dotted line (confidence threshold = 0.90,
denoted as Chigh) and dashed line (confidence threshold =
0.60, denoted as Cjoy) severally. When we reduce the bright-
ness by 60% and 20% in succession, it adds difficulty to
the preliminary local recognition and, thus, makes the results
of the sampling objects unqualified. Therefore, our algorithm
dynamically tunes the confidence threshold upward (15%
higher at a time) accordingly. In addition, with the increase
by 40% and 20% in sequence of the brightness, the thresh-
old is adjusted 5% lower each time. This is consistent with
our design idea that the algorithm values accuracy more than
bandwidth saving. As shown in Fig. 5(b) and (c), the accu-
racy and saved bandwidth of our algorithm are the same as
Clow at first since they share the same threshold. Meanwhile,
Chigh occupies about 25% more bandwidth in exchange for 2%
higher accuracy, which is unnecessary because the requirement
of accuracy has already been met. Then, when the brightness
is reduced gradually, we can see that our algorithm remains
high-accuracy similar to Cpign at the expense of bandwidth
usage, while the accuracy of Cj,y falls to about 88%, which
violates the accuracy requirement of the application. After that,
as the brightness increases, each accuracy continues an upward
swing, and the saved bandwidth of our algorithm is approach-
ing the Cioy line again. This is consistent with the intuition
that when target objects are easy to identify, rather than pur-
suing higher accuracy, our algorithm instead slightly lowers
the threshold to save the bandwidth usage.

Fig. 5(d)—(f) shows that our algorithm is able to save up
to 60% more bandwidth on the drone data set, while consis-
tently meeting the desired accuracy. Only when the brightness
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Fig. 6.  We implement our algorithm on Nvidia Jetson intelligent toy car.
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Fig. 7. End-to-end latency performance under different resolutions and

confidence thresholds.

is reduced to 20% of the original one, which makes the target
objects indiscernible to recognize, does our algorithm decide to
occupy more bandwidth in order to meet the accuracy require-
ment. For comparison, we can see that the solution whose
threshold remains 0.6 (indicated by the dashed line) falls short
of the demand of accuracy as the brightness turns to 20%.
The solution with a fixed threshold of 0.75 (indicated by the
dashed—dotted line) is far more bandwidth consuming when it
is relatively easy to identify target objects.

It can be seen that our algorithm is well performed on
both the traffic data set and drone data set. For videos with
different brightness, our algorithm adaptively adjusts the confi-
dence threshold to save bandwidth while meeting the accuracy
requirements as expected.

D. Test Bed Evaluation

To evaluate the performance of EVA in a more realistic
scenario, we use an Nvidia Jetson intelligent toy car [29]
to emulate the client side, as shown in Fig. 6. It has a spe-
cific operating system called Linux4Tegra OS, and a Jetpack
software development kit (SDK). The SDK contains the gen-
eral library, application programming interface (API) files, and
developer tools. It has a quad-core ARM Cortex-AS57 processor
and an Nvidia Maxwell architecture with 128 Nvidia CUDA
cores. To simulate the limited computing power at the cam-
era side, our implementation runs on Nvidia Jetson’s CPU.
It works with the server to analyze the video captured by its
camera. We measure the end-to-end latency of the system by
inserting timestamps in the code, including server-side latency,
network transmission latency and client-side latency. We first
explore the impact of the input image resolution on end-to-end
latency. As shown in Fig. 7, we can find that as the image res-
olution increases from 480 x 360 to 1280 x 720, these three
latency components are all increasing. Due to the limitation of
computing resources on the client side, its computing latency
increases most obviously. In addition, we limit the resolution
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to 480 x 360 and explore the impact of the confidence thresh-
old on the end-to-end latency. From the figure, we can find
that when the confidence threshold increases from 0.4 to 0.8,
the client side has higher requirements for the accuracy of the
local recognition results, which will cause more target objects
to be transmitted to the server for further recognition. Thus,
the network transmission latency and server-side computing
latency are increasing. It can be seen from the figure that
although the confidence threshold keeps changing, the total
end-to-end latency basically fluctuates around 500 ms.

VI. RELATED WORK

Significant studies have been presented to improve the
efficiency of video analytics pipelines, including exploiting
the spatial redundancies, temporal redundancies, and adaptive
configurations.

A. Spatial Redundancies

Du et al. [14] explored a DNN-driven approach to machine-
centric video streaming, in which video compression and
streaming are driven by the server-side DNN. Their approach
improves bandwidth efficiency by sending only a few regions
in high quality. Guo et al. [15] established cross-camera region
associations to generate optimized Rol masks. Then, they
applied the masks to boost real-time analytics performance.
However, these studies do not make use of redundant
information in the temporal domain to further save transmis-
sion bandwidth. Specifically, the size of the target object keeps
changing over time. There is no need to repeatedly transmit
low-quality and high-quality versions when the target object is
relatively small. On the other hand, Liu et al. [16] designed a
dynamic Rol encoding technique to adjust the encoding qual-
ity on each frame in order to reduce the transmission latency
and bandwidth consumption in the AR offloading pipeline.
Feng et al. [17] presented Rol-based viewport prediction
approach for live VR streaming services. Lai et al. [18] dynam-
ically adjusted visual quality according to the users’ field of
view to enable high-quality and low-latency VR. However,
these studies allow the user to adjust the encoding quality
for each macroblock in a frame and do not remove the back-
ground. For computer vision tasks, our method uses the region
where the target object is located instead of the whole frame
as the basic transmission element. In this way, we are going
a step further based on Rol encoding.

B. Temporal Redundancies

Li et al. [19] presented a video analytics system that sup-
ports efficient real-time querying by performing on-camera
frame filtering. Kang et al. [20] employed specialized binary
classification models that eliminate frames that do not contain
objects of interest. Chen et al. [21] adopted simple pixel-
level differences to eliminate frames whose features have not
changed substantially and are expected to produce the same
results. Hsieh et al. [22] used compressed object recogni-
tion models (e.g., Tiny YOLO) that compute lower-confidence
results to filter out frames. Zhang et al. [37] uploaded only
the frames that best capture the scene when multiple cameras
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looking at the same scene to suppress redundancy. However,
these efforts do not make use of spatial information to further
save bandwidth. That is to say, the transmitted frame contains a
large proportion of nontarget object parts, and this information
is useless to improve the accuracy of the machine-centric
application.

C. Adaptive Configurations

Zhang et al. [23] presented a framework for building adap-
tive stream processing applications that simultaneously simpli-
fies development and improves application accuracy in the face
of limited or varying wide-area bandwidth. Jiang et al. [24]
presented a controller that dynamically picks the best con-
figurations for existing NN-based video analytics pipelines.
Fang et al. [25] presented a framework that takes the dynam-
ics of runtime resources into account to enable resource-aware
multitenant on-device deep learning for mobile vision systems.
Shen et al. [26] presented a scalable system for serving
DNN-based video analytics. The system enables several opti-
mizations in batching and allows more efficient resource
allocation. Ran et al. [11] developed a measurement-driven
framework that chooses the type of deep learning model and
the location to perform a task based on application require-
ments, such as accuracy, frame rate, energy, and network data
usage. Wang et al. [12] studied joint configuration adaption
and bandwidth allocation for the edge-assisted real-time video
analytics system and proposed an efficient online algorithm
which can select appropriate configurations for multiple video
streams. Hanyao et al. [13] maximized the overall accuracy
of object detection by deciding the frequency of edge-assisted
inference. These studies make configuration decisions either
from a systematic or theoretical perspective to optimize a given
goal. However, they do not leverage the uneven distribution of
important pixels; instead, the videos are encoded by traditional
codecs with the same quality level on each frame. In fact, the
nontarget object parts are useless to improve the accuracy and
impose burdens on the network transmission.

VII. CONCLUSION

In this article, we propose a framework that supports effi-
cient real-time video analytics by leveraging both spatial and
temporal redundancies. We used the region where the target
object is located instead of the whole frame as the basic trans-
mission element and transmit each object only once. Based
on the framework, we designed an adaptive offloading algo-
rithm, which coordinates the recognition process between the
camera and the server according to current network condi-
tions, in conjunction with the application’s requirements. We
also designed a confidence threshold adjustment algorithm to
guarantee the robustness of our system. Results from extensive
experiments showed that EVA outperforms several baseline
systems: it reduces significant bandwidth usage by up to 90%,
while consistently meeting the desired accuracy.
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